Status of STARLiTe beamline at Texas A&M Cyclotron Institute

J. T. Burke, R. Casperson, M. McCleskey and the STARLiTe collaboration

The STAR LiTe collaboration consists of more than 55 researchers, post-docs, graduate and undergraduate students from five different countries and multiple national laboratories and universities. Work on the installation of the STARS (Silicon Telescope Array for Reaction Studies) and the LiBerACE (Livermore-Berkeley array for collaborative experiments) [1] at TAMU-CI was completed in March of 2012 and the commissioning run of 243Am(p,t)241Am for the study of the 240Am(n,f) reaction via the surrogate method was completed in April of 2012 [2]. Since that time an additional 8 experiments have been performed by 6 different groups representing over 1100 hours of beamtime. Analysis of these experiments is ongoing and results are expected to begin to be published in the coming months.

Experiments performed this past year:

- 174Yb(p,d)173Yb* to measure benchmark 173Yb(n,g) case for surrogate reaction
- 239Pu(p,d)238Pu*, 239Pu(p,t)237Pu* to measure 236,237Pu(n,g) cross sections using the surrogate technique
- 95Mo(d,p)96Mo*, 95Mo(d,p)96Mo to measure 95Mo(n,g) cross sections using the surrogate technique
- 89Y(p,d)88Y*, 89Y(p,t)87Y to measure 87Y(n,g) cross sections using the surrogate technique
- 54Fe(12C,p) for nuclear structure and model testing
- 24Mg(4He,4He)24Mg* as a surrogate for the astrophysical 12C + 12C reaction
- 175Lu(p,d)174Lu* to determine 173Lu(n,g) cross section using the surrogate technique
- 152Sm(p,d)153Sm* and 154Sm(p,d)155Sm*