Subthreshold cascade production in heavy ion collisions

L. Feng, L.W. Chen,1 C.M. Ko, and S.H. Lee2

1INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
2Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

We have calculated the cross sections for the reaction YY→NΞ (Y = Λ, Σ) based on a gauged SU(3)-invariant hadronic Lagrangian in the Born approximation [1] and found that these cross sections are almost four times the cross sections for the reaction KY→πΞ that was considered in a previous study [2]. We then used these cross sections to study Ξ production in 40Ar+KCl collisions at the subthreshold energy of 1.76 AGeV within the framework of a relativistic transport model that includes explicitly the nucleon, delta, pion, and perturbatively the kaon, antikaon, hyperons, and Ξ [3]. We found that the reaction YY→NΞ would enhance the abundance by a factor of about 16 compared to that from the reaction KY→πΞ, resulting in an abundance ratio Ξ−/(Λ+Σ0) = 3.38 × 10−3 that is essentially consistent with that measured by the HADES Collaboration at GSI [4]. Our study has thus helped in resolving one of the puzzles in particle production from heavy ion collisions at subthreshold energies.

FIG. 1. Left window: Cross sections for (a) ΛΛ→NΞ, (b)ΛΣ→NΞ, (c)ΣΣ→NΞ, (d) NΞ→ΛΛ, (e) NΞ→ΛΣ, and (f) NΞ→ΣΣ as functions of the center-of-mass energy from the Born approximation with cutoff parameters Λ = 0.5 GeV (dashed lines), Λ = 0.7 GeV (solid lines), and Λ = 1 GeV (dotted lines). Right window: Time evolutions of (a) central baryon density (right scale) and the abundances (left scales) of π and Δ, (b) K, Λ, Σ, and antikaon, and (c) Ξ produced from different reactions.