Highly excited high spin states in 22Ne

1Department of Nuclear Physics, Saint-Petersburg State University, St. Petersburg 198504, Russia
2Department of Physics, Abo Akademi, FIN-20500, Turku, Finland
3V. G. Khlopin Radium Institute, St.-Petersburg, 194021 Russia
4Institut für Kernphysik, Technische Universität, 69289 Darmstadt, Germany
5Russian Scientific Centre “Kurchatov Institute”, 123182 Moscow, Russia
6Flerov Laboratory of Nuclear Reactions, JINR, Dubna 141980, Russia
7Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

The main aim of this work is to study the high spin states of some highly excited levels in 22Ne and to investigate their nature. The data on the presence of highly excited high-spin states in 22Ne which decay by α-particles were obtained previously using the 18O+12C reaction (see [1] and references therein). However, in spite of a number of theoretical predictions for the properties of the 22Ne quasimolecular bands [2], mainly experimental data are available only for the low lying levels which decay by γ-rays [3,4]. The scarce information on high-spin states in 22Ne is in strong contrast with the data on 20Ne, where many high-spin states were interpreted as members of ten rotational bands [5].

We used the 14C(12C, α_1)22Ne*$\rightarrow$$\alpha_2$+18O reaction to populate high spin states in 22Ne. If α_1 detected at zero degrees, then the α_1- α_2 angular correlations provide for a reliable way to make spin-parity assignment. The angular correlation function, $W(\theta)$, will be

$$W(\theta) \sim (2J + 1) / 4\pi [P_J(cos\theta)]^2$$

where θ is the angle of the second α-particle, J is the spin of the level in neon and P_J is the ordinary Legendre polynomials.

Experiment

The experiment was carried out using the K-130 Cyclotron of the University of Jyvaskyla, Finland and a 44 MeV 12C beam. The target was a self-supporting carbon foil with a thickness of 280 μg/cm2 (80% of 14C). A schematic of the experimental arrangement is shown in fig. 1. The primary α-particle was detected using two 10 mm2 silicon detectors of 380μm thickness placed at $\pm 3^0$ (below and above the horizontal plane) behind a 15μm platinum foil used to absorb the elastically scattered 12C ions. The α-particles were separated from other light products by pulse-shape discrimination techniques [6]. The α-particles from the decay of states in 22Ne were detected in $dE - E$ detector telescopes. Each telescope consisted of a position-sensitive gas proportional counter used as the dE detector combined with 10 silicon PIN diodes as E detectors. The total active area of the $dE - E$ detectors is 18 cm^2. The thickness of the fully depleted PIN diodes was 380μm. The dE gas proportional counter has a single resistive wire and measures the energy loss of the particles and the X-coordinate of the points of
penetration. The counter was filled with Ar+10% CH4 gas mixture (pressure 250 Torr). A continuous renewing of the gas in the counter volume was provided. The length of the detectors (100 mm) spanned 40° in the laboratory system. The angles at the center of each diode were measured with the precision of better than ±0.5°. The (α-α) double coincidence events were analyzed to generate the α2 angular distributions for the decays to the ground state of 18O. The decay channel was selected using a two-dimensional plot E\(\alpha_2\) versus E\(\alpha_1\) at each α2 angle as given by the position sensitivity of the α2 detector.

Results

The measured angular correlation functions together with a fit by squared Legendre polynomials are shown in Fig. 1. Results of the analysis are summarized in Table I.
Table I. \(^{22}\text{Ne}\) levels. Energy, spin and parity information from this and other work.

<table>
<thead>
<tr>
<th>Present work</th>
<th>Adopted levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.0 MeV (unres. group)</td>
<td>17.05 MeV 7(^-) [23]</td>
</tr>
<tr>
<td>18.45 MeV (\Gamma \sim 330) keV</td>
<td>18.42 MeV 7(^-) [22]</td>
</tr>
<tr>
<td>19.13 MeV (unres. group)</td>
<td>19.28 MeV 7(^-) [9]</td>
</tr>
<tr>
<td>20.0 MeV 9(^-) (\Gamma \sim 270) keV</td>
<td>19.89 (10(^+)) [12]</td>
</tr>
<tr>
<td>20.7 MeV 11(^-) (\Gamma \sim 340) keV</td>
<td>20.85 MeV 9(^-) [9]</td>
</tr>
<tr>
<td>21.6 MeV 9(^-) (\Gamma \sim 350) keV</td>
<td>21.84 9(^-) [9]</td>
</tr>
<tr>
<td>22.2 MeV 12(^+) (\Gamma \sim 250) keV</td>
<td>(22.2) MeV [22]</td>
</tr>
<tr>
<td>22.9 MeV (\Gamma \sim 290) keV</td>
<td>24.14 MeV [24]</td>
</tr>
<tr>
<td>24.0 MeV (unres. group)</td>
<td>24.14 MeV [24]</td>
</tr>
<tr>
<td>25.0 MeV 9(^-) (\Gamma \sim 350) keV</td>
<td>25.0 MeV [24]</td>
</tr>
<tr>
<td>25.9 MeV (unres. group)</td>
<td>26.89 MeV [24]</td>
</tr>
</tbody>
</table>

A very characteristic back bending observed for the high spin states with the positive parity in \(^{22}\text{Ne}\) and the comparison with \(^{20}\text{Ne}\) (Fig.2) evidences that new 12\(^+\) level is the yrast level in \(^{22}\text{Ne}\).

FIG. 2. Effective moment of inertia versus of the square of the rotational frequency for the \(^{20}\text{Ne}\) and \(^{22}\text{Ne}\) yrast lines. The inset compares the yrast-spin trajectories for these nuclei as was obtained in [10].
Summary

The spins of five highly excited states in ^{22}Ne were determined by measuring double α-α angular correlations $^{14}\text{C}(^{12}\text{C},\alpha_{1})^{22}\text{Ne}^{*} \rightarrow \alpha_{2}+^{18}\text{O}$ reaction. The 22.2 MeV (12$^{+}$) state is assigned to the yrast line of ^{22}Ne in good agreement with theoretical prediction based on the Nilsson-Strutinsky formalism. The states at 20.7 MeV (11$^{-}$) and 21.6 MeV (9$^{-}$) were considered as members of the α-cluster rotational bands supporting the cluster model predictions.