Reexamination of the astrophysical S factor for the $\alpha+d\rightarrow^6\text{Li}+\gamma$ reaction

A. M. Mukhamedzhanov, L. D. Blokhintsev,1 and B. F. Irgaziev2

1Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
2GIK Institute of Engineering Sciences and Technology, Topi, Pakistan

Recently a new measurement of the $^6\text{Li}(A\ 150\ \text{MeV})$ dissociation in the field of ^{208}Pb has been reported in [1] to study the radiative capture $\alpha+d\rightarrow^6\text{Li}+\gamma$ process. However, the dominance of the nuclear breakup over the Coulomb one prevented from obtaining the information about the $\alpha+d\rightarrow^6\text{Li}+\gamma$ process from the breakup data. The astrophysical $S_{24}(E)$ factor has been calculated within the α-d two-body potential model with potentials determined from the fits to the α-d elastic scattering phase shifts. However, the scattering phase shift itself, according to the theorem of the inverse scattering problem, doesn't provide a unique α-d bound state potential, which is the most crucial input when calculating the $S_{24}(E)$ astrophysical factor at astrophysical energies. In this work we emphasize an important role of the asymptotic normalization coefficient (ANC) for $^6\text{Li}\rightarrow\alpha+d$ which controls the overall normalization of the peripheral $\alpha+d\rightarrow^6\text{Li}+\gamma$ process and is determined by the adopted α-d bound state potential. Since the potential determined from the elastic scattering data fit is not unique, the same is true for the ANC generated by the adopted potential. However, a unique ANC can be found directly from the elastic scattering phase shift, without invoking intermediate potential, by extrapolation the scattering phase shift to the bound state pole [2].

We demonstrate that the ANC previously determined from the α-d elastic scattering s-wave phase shift in [2] and confirmed by the abinitio calculations [3], gives $S_{24}(E)$, which is at low energies about 38% lower than the one reported in [1]. We recalculate also the reaction rates, which are also lower than those obtained in [1]. This paper has been published in Phys. Rev. C.