Low-energy d+d fusion reactions via the Trojan horse method

A. Tumino,1,2 C. Spitaleri,1 A. M. Mukhamedzhanov, S. Typel,3,4 M. Aliotta,5 V. Burjan,6 M. Gimenez del Santo,7 G. G. Kiss,1,8 V. Kroha,6 Z. Hons,6 M. La Cognata,1 L. Lamia,1 J. Mrazek,6 R. G. Pizzone,1 S. Piskor,6 G. G. Rapisarda,1 S. Romano,1 M. L. Sergi,1 and R. Sparta1

1Laboratori Nazionali del Sud - INFN and DMFCI Università di Catania, Catania, Italy
2Università degli Studi di Enna "Kore", Enna, Italy
3Excellence Cluster Universe - Technische Universität München, Garching, Germany
4GSI Helmholtzzentrum für Schwerionenforschung GmbH - Theorie, Darmstadt, Germany
5School of Physics and Astronomy - University of Edinburgh; SUPA, United Kingdom
6Nuclear Physics Institute of ASCR - Rez near Prague, Czech Republic
7Departamento de Física Nuclear - Universidade de São Paulo, São Paulo, Brasil
8ATOMKI - Debrecen, Hungary

The bare nucleus S(E) factors for the 3H(d,p)3H and 3H(d,n)3He reactions have been measured for the first time via the Trojan Horse Method off the proton in 3He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the PreMain Sequence phase of stellar evolution. This is the pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4±1.8 MeVb for 3H+p and 60.1±1.9 MeVb for 3He+n. None of the existing curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors. This work has been published in Phys. Lett. B.