Isospin-dependent pion in-medium effects on charged pion ratio in heavy ion collisions

J. Xu, C. M. Ko, and Y. Oh

We have studied [1] the dependence of the pion spectral function in asymmetric nuclear matter on the charge of the pion by using results from the chiral perturbation theory for the pion-nucleon s-wave interaction [2] and from the Δ-hole model for the pion-nucleon p-wave interaction [3,4]. Because of increasing π^- and decreasing π^+ in-medium masses due to the pion-nucleon s-wave interaction in neutron-rich matter, the strength of π^+ spectral function at low energies is somewhat larger than that of π^- spectral function, and the strength around the peak of the Δ resonance mass distribution decreases while that near the threshold increases with increasing charge of the Δ resonance. In a thermal model that assumes that nucleons, pions, and Δ resonances produced in heavy ion collisions are in thermal but not chemical equilibrium, with the latter needed to maintain the final pion to nucleon ratio, the π^-/π^+ ratio is slightly reduced in comparison with the case without pion in-medium effects. As shown in Fig. 1, this is the case for all values of nuclear symmetry energy parameter $x=0, 0.5, 1$, corresponding to increasingly softer nuclear symmetry energy at high densities, and of the Migdal parameter g' that describes the repulsive Δ-hole interaction. Taking into consideration of the isospin-dependent pion in-medium effects in the transport model thus will have some, albeit not very significant, influence on the extraction of the nuclear symmetry energy from the measured π^-/π^+ ratio of about 3, which is also shown in Fig.1 with a large error bar, by the FOPI Collaboration [5]. Further theoretical work is needed to understand the relation between

FIG. 1. The π^-/π^+ ratio in Au+Au collisions at the beam energy of 0.4 AGeV for different values of nuclear symmetry energy ($x=0, 0.5, 1$) and the Migdal parameter $g'=0.3, 0.4, 0.5, 0.6$. Results for $g'=\infty$ correspond to the case without the pion medium effects.

* Present address: School of Physics and Energy Sciences, Kyungpook National University, Daegu, Korea
the π^-/π^+ ratio and the behavior of the nuclear symmetry energy at high densities in the transport model
description of heavy ion collisions.