The 97Ru half-life: high-precision measurement shows no temperature dependence

J. R. Goodwin, V. V. Golovko, V. E. Iacob, and J. C. Hardy

1Department of Physics, Queen’s University, Stirling Hall, Kingston, ON, Canada

This experiment was undertaken to investigate whether the half life of the electron-capture decay of 97Ru located in a metallic environment shows any temperature dependence, as has been claimed for the electron-capture decay of 7Be in a recent publication [1]. The results of our measurement on 97Ru have now been published [2].

Previous publications claiming to observe temperature dependence of β^-, β^+ and electron-capture-decay half-lives [1, 3, 4] have used the so-called “Debye effect” to explain the phenomenon. The authors claim that the conduction electrons, present in a metal, comprise a sort of plasma, which they refer to as a Debye plasma. They argue that this plasma changes the phase space available for the decay and thus increases (for β^- or electron-capture decay) or decreases (for β^+-decay) the nuclide’s half life. The change in phase space would be enhanced, they argue, if the source is cooled to very low temperatures. Although the half-life changes, which were reported at low temperature (~12K), were less than their proposed theory indicated, they were in the same direction.

We set out by repeating one of the reported experiments: the measurement of the half-life of 198Au in gold at room temperature and at 19K [5]. Spillane et al. [3] had claimed a 3.6(10)% effect, but we found no effect and set an upper limit of 0.04%, two orders of magnitude lower than their claims. Having shown no effect to exist for the β^--decay of 198Au, we next turned to a case of electron-capture: the decay of 97Ru.

The details of this experiment were described in last year’s Progress Report [6] and in our published paper [2]. From our analysis of the decay of the 216-keV delayed γ ray in 97Tc, the daughter of 97Ru, we obtained a half-life (statistical uncertainty only) of 2.8382(13) d for the cold-temperature measurement, and of 2.8370(13) d for the room-temperature measurement. The difference between these two results is 0.0012(18) d, which gives an upper limit of 0.0030 d, or 0.1%, on any temperature-dependent difference in the 97Ru half-life at the 68% confidence level.

Since their delayed γ rays were present in the spectra as well, we have also obtained data at both temperatures for two other isotopes, 103Ru and 105Rh, which both decay by β^- emission. We were able to show that neither of these isotopes undergoes a change in half-life, as would be predicted by the “Debye theory”:

- For 103Ru, our measurements yield a half-life of 39.210 ± 0.016 d at room temperature and 39.219 ± 0.025 d at 19K. These results are also the same within 0.1%.

- For 105Rh, our measurements obtain a half-life of 35.357 ± 0.036 h at room temperature, and a half-life of 35.319 ± 0.023 h at 19K. These results are the same within 0.2%.

Obviously we cannot comment on the validity of the 7Be measurement, which claimed to have observed a temperature effect [1], but we can certainly refute any suggestion that the half-lives of electron-capture decays in general exhibit significant temperature dependence when the source is placed in a metal host. Wang et al. [1] used their model to calculate that the half-life of 7Be in a metal should
change by 1.1% between $T = 293$ and 12K, a result that agrees reasonably well with their measured values. Using the same model, we calculate that the half-life change for the 97Ru decay should be 11.2% between $T = 293$ and 12K and 8.4% between $T = 293$ and 19K, the temperature we obtained. Our measured upper limit on any half-life change over this temperature range is nearly two orders of magnitude less than this model prediction. We have previously demonstrated that the “Debye model” has no validity for β^- decay [2] and have confirmed that conclusion in this work; we can now state with equal confidence that it also does not apply to electron-capture decay.