Half-life of the superallowed β-emitter 46V

H. I. Park, J. C. Hardy, V. E. Iacob, L. Chen, J. Goodwin, V. Horvat, N. Nica, E. Simmons, L. Trache, and R. E. Tribble

After making concerted efforts over several years to develop a useful 47Ti beam [1], we completed a successful measurement of the half-life of 46V with up to 50 nA of beam in June 2009. We used the 1H(47Ti, $2n$)46V reaction at a primary beam energy of 32A MeV. Our experimental arrangement was the same as described before [1].

The main contaminant for this measurement was 42Sc, another superallowed β-emitter with $t_{1/2} = 680.72$ ms, which is rather similar to the 422.50 ms half-life of 46V. Because of this potentially serious problem, we carefully adjusted the distribution of implanted 46V in the mylar tape by setting the thickness of Al degraders to minimize the number of 42Sc ions stopping in the tape; and then we routinely measured the purity of the beam with a position-sensitive silicon detector inserted at the focal plane of the Momentum Achromat Recoil Separator (MARS) on a daily basis throughout the whole experiment. Finally, the subsequent data analysis has included a detailed impurity analysis based on the range differences among all possible impurities, including 42Sc, in the collected 46V samples. The amount of 42Sc present in the samples relative to that of 46V was determined to be 0.1%, an amount for which we can satisfactorily correct.

Approximately 95 million β events were recorded under the various combinations of different bias voltages for the 4π proportional gas counter, discriminator thresholds, and dominant dead times. Currently, we are finalizing our analysis to extract the precise half-life for 46V with an associated error budget.