The motivation to measure the electron-capture (EC) branch of ^{100}Tc is two-fold: ^{100}Mo is a neutrinoless double-β decay ($0\nu\beta\beta$) candidate \cite{1, 2} for which the ^{100}Tc EC branch is needed for matrix element calculations; and inverse EC on ^{100}Mo has been proposed \cite{2} as a potential detector for observing charged-current neutrinos from the pp chain. The main motivation at this time, however, is $0\nu\beta\beta$ because there is no concrete plans to develop ^{100}Mo as a neutrino detector due to the large mass (~ 3 tons) which would be required. To date, only one measurement of the EC branching ratio has been published which has a 50% uncertainty on its value: $(1.8\pm 0.9) \times 10^{-5}$ \cite{3}.

A schematic diagram of the setup we used at the IGISOL facility in Jyväskylä, Finland is shown in Fig. 1. Using the Penning-trap system JYFLTRAP, contaminants in the beam (most notably ^{99}Tc and ^{100}Ru) were removed. The purified ^{100}Tc beam was collimated before entering a cylindrical cavity bored into a cube of plastic scintillator to ensure all the activity was implanted onto a foil near the opposite end of the cube. Imposing a veto from signals in the scintillator allowed us to suppress the dominant ($\sim 99.999\%$) β^- decay branch to ^{100}Ru by $>90\%$. A planar Ge detector observed the x-rays following the EC of ^{100}Tc with very little attenuating material between it and the activity (3 mm of scintillator and 120 μm of Be). A preliminary x-ray spectrum from the experiment is shown in Fig. 2. The dominant peak at 19.2 keV originates from K_α x-rays following the decay to ^{100}Ru; without the β veto, this peak would overwhelm the small ^{100}Mo x-ray peak at 17.4 keV. We calculate the EC branching ratio based on the ratio of the area of the small – but clearly resolved – peak to that of the 540 keV γ ray which follows the β^- decay. Although analysis of the data continues, preliminary results indicate a branch of 1×10^{-5} with an uncertainty of $\pm 20\%$. The dominant sources of

Figure 1. Schematic diagram of the detector setup at the end of the IGISOL/JYFLTRAP beamline.
Uncertainty are expected to be statistics in the 100Mo peak and our understanding of the relative efficiency of the Ge detector between 17 keV and 540 keV.

Figure 2. Simplified decay scheme (inset) and x-ray spectrum from 100Tc decay.