In this work we performed the first full-scale three-body calculations of the stripping reaction 12C(d,p)13C. First deuteron elastic scattering and stripping processes off a target nucleus consisting of A nucleons are treated within the framework of the few-body integral equations theory. By projecting the (A+2)-body operators onto target states, matrix three-body integral equations are derived which allow for the incorporation of the excited states of the target nucleons. This approach is applied to deuteron scattering off 12C when the latter is in its ground state before and after the reaction. For the nucleon-12C subsystem three sets of (quasi-separable) potentials are employed. The first such potential is based on the one derived in Ref. [1] for orbital angular momentum states with $L \leq 2$, which is valid for low energies. As second set we use the potential of Miyagawa and Koike [2] which is fit to semiphenomenological higher-energy phase shifts for states up to $L = 6$. The third one finally consists of $3 \leq L \leq 5$ of the potential set of Miyagawa and Koike while the potential parameters for $L \leq 2$ are determined by simultaneously fitting the elastic-channel T matrix obtained as solution of multichannel two-body Lippmann-Schwinger equations, to the experimental low-energy and the semi-phenomenological higher-energy phase shifts. For the nucleon-nucleon interaction we take one of the separable $3S1 - 3D1$ potentials from Ref. [3]. Differential cross sections for the elastic scattering reaction $d+^{12}$C$\rightarrow d+^{12}$C and the transfer reaction $d+^{12}$C$\rightarrow p+^{13}$C(13C*) are calculated at deuteron bombarding energies 4.66 and 15 MeV (up to 36-channel calculation), and at 56 MeV (up to 76-channel calculation) together with some selected analyzing powers, and are compared with experimental data. At the highest energy considered, the decomposition of the differential cross section into the near-side and the far-side components shows the appearance of nuclear rainbow scattering. In Figs 1 and 2 we present the calculated and experimental differential cross sections for the elastic scattering $d+^{12}$C$\rightarrow d+^{12}$C and transfer reaction $d+^{12}$C$\rightarrow p+^{13}$C at deuteron energy 4.66 MeV. The elastic scattering data are taken from Ref. [4] and the transfer data from Ref. [5]. The paper has been accepted for publication in Physical Review C (2007).
Figure 2. Same as Figure 1 but for the differential cross section for the $^{12}\text{C}(d,p)^{13}\text{C}(p_{\text{g.s.}})$ stripping reaction to the ground state of ^{13}C. Experimental data are from Ref. [5].