The fragmentation of quasiprojectiles

Fragments emitted from quasi projectile formed from the reactions of 40Ca, 40Ar, 48Ca with 112,124Sn, were studied using the FAUST array. Isobaric, isotopic, fractional and mean N/Z yield comparisons were made between systems [1]. These comparisons showed that the neutron richness of the system affected the fragment yields, with the neutron-rich nuclides populated preferentially by the neutron-rich systems; the neutron-poor nuclides populated preferentially by the neutron-poor systems. This trend is observed at all angles and all nuclides. For an example figure 1 shows the carbon fractional yields at both energies at 7°.

![Figure 1](image-url)
Figure 1. Carbon fractional yields for the 32 MeV/nucleon systems top and 45 MeV/nucleon systems bottom at the lab angle of 7°.
The N/Z distribution of the fragment yields was studied to observe an inhomogeneous N/Z distribution between the LCP’s (Light Charged Particles: Z<3) and IMF’s (Intermediate Mass Fragments: Z>2) [1]. Figure 2 shows the multiplicity of LCP’s, IMF’s and Total. The results showed a new trend. Previous studies had shown that increased proton richness increases the LCP multiplicity dramatically, while the IMF multiplicity remained nearly constant [2]. For increasing neutron richness the previous studies suggested that the neutron-rich LCP multiplicity would increase; however, this work showed that the IMF multiplicity increases, while the LCP multiplicity stays nearly constant with increasing neutron richness.

Figure 2. Multiplicity of LCP’s, IMF’s and Total as a function of N/Z of the quasiprojectile source for the 40Ar on 112Sn systems. 32 MeV/nucleon on top and 45 MeV/nucleon on bottom. Error bars are statistical.
The inhomogeneous distribution of N/Z was also studied using the mean N/Z of the IMF divided by the mean N/Z of the LCP shown in figure 3 [1]. The results were in accord with previous studies, however this work went further and showed that there was a dependence of the mean N/Z of the IMF on the quasiprojectile N/Z [1, 2].

Figure 3. The ratio of the mean N/Z of the IMF and the mean N/Z of the LCP versus the N/Z of the quasiprojectile. 32 MeV/nucleon systems on top and 45 MeV/nucleon systems on bottom.
Finally the inhomogeneous distribution of N/Z was studied using the mirror nuclei ratios $^3\text{H}/^3\text{He}$, $^7\text{Li}/^7\text{Be}$, $^{11}\text{B}/^{11}\text{C}$ and $^{15}\text{N}/^{15}\text{O}$ [1]. Figure 4 shows the $^{11}\text{B}/^{11}\text{C}$ ratio. Previous studies had only used the $^3\text{H}/^3\text{He}$ ratio and observed an increase of the ratio with increasing quasiprojectile N/Z [2]. This work demonstrated that all of the mirror ratios increased with increasing quasiprojectile N/Z [1].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{The $^{11}\text{B}/^{11}\text{C}$ ratio as a function of quasiprojectile N/Z. 32 MeV/nucleon systems on top and 45 MeV/nucleon systems on bottom.}
\end{figure}