The Lowest Excited States of ¹³O and Astrophysical Implications

V.Z. Goldberg and A. Mukhamedzhanov, B.B. Skorodumov,¹ P. Boutachkov,¹

A. Aprahamian,¹ S. Almaraz,¹ J.J. Kolata,¹ L.O. Lamm,¹ M. Quinn,¹ A. Woehr,¹

G.V. Rogachev,² H. Amro,³ F. D. Becchetti,³ Y. Chen,³ H. Jiang,³ and S. Brown⁴

¹Institute of Structure and Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556

² Physics Department, Florida State University, Tallahassee, FL 32306

³ Physics Department, University of Michigan, Ann Arbor, Michigan 48109

⁴Physics Department, Florida State University, Tallahassee, FL 32306 and Department of Physics,

University of Surrey, GU2 7XH, United Kingdom

Quantum characteristics of excited states in A=13 T=3/2 nuclei were unknown before this work. Hence there was no knowledge about their nuclear structure.

The nuclear structure of ¹³O is important for evolution of very low-metallicity massive stars [1]. It has been shown that ¹²N can be depleted into ¹²C through β^+ decay or by photodisintegration ¹²N(γ ,p)¹¹C. However, ¹²N may capture a proton to form ¹³O through the process ¹²N(p, γ)¹³O. This process can compete with β^+ decay and photodisintegration of ¹²N at some temperatures and densities. It is important

Figure 1. The temperature and density conditions where the ${}^{12}N(p,\gamma)$ reaction is important. The solid line (new results) and dashed line Ref. [1] show where the rates for ${}^{12}N$ proton capture and beta decay of ${}^{12}N$ will be equal. In addition, the density should be above the dashed-dotted line to produce ${}^{13}O$ faster than it can be photo-dissociated. The inserted figure shows astrophysical S factor calculations: the solid line is total S factor; the dashed line shows only resonance capture; the dashed-dotted line shows only direct capture

to evaluate the density and temperature regime where that occurs.

In this work, we present results for ¹²N+p scattering at several angles using thick target inverse kinematics method [2]. We obtained definite information on the spin-parity ($\frac{1}{2}^{+}$), width (Γ =0.45±0.1 MeV), and nuclear structure (S_{s.p.}~0.7) of the first excited state of ¹³O. We also identify for the first time a second excited state at excitation energy of 3.29 MeV with quantum characteristics $J^{\pi}=\frac{1}{2}$ or $3/2^{-}$ and with Γ =0.075±0.03 MeV. These results were obtained by using the *R* matrix analysis of the experimental data, and were supported by application of a potential well approach to the isobaric level shifts.

We examined the impact of new experimental information of the first excited state $\frac{1}{2}^{+}$ on $^{12}N(p,\gamma)^{13}O$ reaction which might play important role in nucleosynthesis reactions of low-metallicity stars. Fig.1 presents the temperature and density conditions, where the $^{12}N(p,\gamma)$ reaction is important, together with the astrophysical S factor calculated for both direct capture and capture through the resonance in question.

[1] M. Wiescher et al., Astrophys. J. 343, 352 (1989).

[2] K.P. Artemov et al., Sov. J. Nucl. Phys. 52, 406 (1990).