
Self-Consistent Approximations to a Model with Spontaneously Broken O(N) Symmetry  
 

Yu.B. Ivanov, F. Riek, H. van Hees, and J. Knoll 
 

Self-consistent Φ-derivable Schwinger-Dyson resummation schemes for quantum field theories 
(QFT’s) are preferable to other schemes since only they obey the conservation laws for the expectation 
values of energy, momentum and charge and at the same time guarantee the thermodynamic consistency 
for thermal-equilibrium systems [1]. However, these kind of approximations violate the Ward-Takahashi 
identities of symmetries underlying the QFT’s for two-point and higher vertex functions, leading 
especially to the violation of the Nambu-Goldstone (NG) theorem in the phase of spontaneously broken 
symmetry (NG phase) [2]. 

Earlier we have shown that Φ-derivable approximations to renormalizable QFT’s can be 
renormalized with temperature-independent counter terms [3]. Recently a “gapless Φ-derivable” 
approximation scheme to a linear O(N)-σ model has been proposed which obeys the NG theorem in the 
NG phase [4]. Here we apply the previously developed renormalization procedure [3] to this model and 
discuss remaining problems in the NG phase at finite temperature [5]. 

As has been demonstrated in [4], for the linear O(N)-σ model a modification to the two-loop 
approximation of the Φ functional can be uniquely defined by the assumption that (i) it restores the NG 
theorem in the NG phase, (ii) it leaves the approximation in the phase with restored symmetry (Wigner-
Weyl phase) unchanged to the two-loop approximation (i.e., the Hartree-Fock (HF) approximation), (iii) 
it does not change the HF equation of motion for the mean field. Thus, according to [3], this model can be 
renormalized with temperature-independent counter terms. In contrast to the usual HF equation, the 
renormalized gapless HF (gHF) approximation for T=0 resulting from the modified Φ functional is O(N) 
symmetric in the mass-independent renormalization scheme, and thus the physical mass and coupling can 
be chosen independently from the renormalization-scale, μ. 

As shown in the figure, at finite temperature the gHF equations lead to a rather complex phase 
structure: There exist two critical temperatures, T1 and T2. For T>T1 the equations have a metastable 
solution in addition to the stable one which shows a phase transition at the temperature T2>T1.  While the 
latter critical temperature is approximately renormalization-scale independent, the former depends 
logarithmically on the renormalization scale, μ. For T>T2, in the stable branch the mean field vanishes, 
but the pion and the σ masses are different up to a temperature Tcross, where chiral symmetry is finally 
completely restored. Above a certain temperature, no physically meaningful solutions of the renormalized 
gHF equations exist. This can be traced back to large renormalization-scale dependent logarithms which 
become the driving terms of the equations for higher temperatures. For the same reason, another 
metastable symmetric solution with much higher meson masses exists. This solution corresponds to the 
usual HF approximation in the Wigner Weyl phase of the model and ceases to exist at the same limiting 
temperature as the other branches, described above. The existence of this artificial limiting temperature 
has been already found in the paper by Baym and Grinstein [2]. 

This renormalization-scale dependence of Φ-derivable approximations has also been analyzed 
from the point of view of the renormalization-group equation [6]: The β function, evaluated from a Φ-
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derivable approximation, deviates from its perturbative expansion, beginning at orders in the expansion 
parameter (like the coupling or number of loops in the diagrams taken into account) higher than that 
explicitly used to define the approximate Φ functional. The reason is the violation of “crossing 
symmetry” in the sense of [3]: Solving the self-consistent equations of motion leads to a partial 
resummation of perturbative diagrams to any order in the expansion parameter which is necessarily 
incomplete for any truncation of the Φ functional. 

Within the here applied renormalization scheme for the gHF approximation, the renormalization-
scale dependence at finite temperature originates from the subtraction of the “hidden subdivergence” of 
the four-point function inside the self-consistent tadpole loop. As shown in [3], the corresponding four-
point function consists in the resummation of diagrams of arbitrarily high orders in the coupling, λ, but 
only in one of three channels, and thus the β function of this resummed  four-point function deviates from 
the correct one at orders  O(λ2).  
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Figure 1. The solution of the gHF equation for the mean field, φ (left panel), and the meson masses (right panel) in 
the chiral limit. The solid (dashed) lines represent the stable (metastable) solutions. The renormalization scale has 
been chosen to μ=0.6 GeV. 
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