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Heavy quarks and quarkonia are believed to be valuable probes of the medium produced in 

ultrarelativistic heavy-ion collisions (URHICs). Recent spectra of semileptonic decay electrons associated 
with charm and bottom hadrons in Au-Au collisions at the Relativistic Heavy-Ion Collider (RHIC) have 
shown a surprisingly large suppression (small nuclear modification factor, RAA) [1-3] and elliptic flow (v2) 
[4-6], indicating significantly stronger interactions of heavy quarks in the quark-gluon plasma (QGP) than 
expected within perturbative QCD (pQCD). 

To study microscopic reaction mechanisms underlying the behavior of heavy quarks in a strongly 
interacting QGP (sQGP), we have introduced D- and B-meson like resonance states [7] mediating elastic 
rescattering of c- and b-quarks. Here, we study the consequences of this conjecture for the thermalization 
and flow of the heavy quarks in the sQGP formed in Au-Au collisions at RHIC, employing a Fokker-
Planck approach, followed by a combined quark-coalescence/fragmentation model for the hadronization 
of the heavy quarks. The resulting transverse-momentum (pT) spectra and v2 of the single decay-electrons 
are confronted with RHIC data [8]. 

The drag and diffusion coefficients for heavy-quarks, entering the Fokker-Planck equation, are 
calculated from elastic rescattering off light antiquarks in the sQGP via D- and B-meson resonances 
assumed to survive above the critical temperature. This is motivated by recent lattice QCD (lQCD) 
computations of hadronic correlators and lQCD-based potential models which indicate colorless 

resonances in both the light- and heavy-quark sector [9]. The resonant Q- q  cross sections are 

supplemented with leading-order pQCD elastic scattering [10]. We find that the resulting drag 
coefficients imply thermalization times which are lower by a factor ~3 compared to pQCD scattering 
alone [7]. 

The coefficients are used in a relativistic Langevin simulation for heavy-quark interactions in an 
isentropically expanding, elliptic QGP fireball corresponding to impact parameter b=7fm 200 AGeV Au-
Au collisions at RHIC. The expansion parameters are adjusted to resemble the time evolution of radial 
and elliptic flow of the bulk matter in hydrodynamic simulations [11]. The proper thermal equilibrium 
limit in the Langevin process is implemented via the Hänggi-Klimontovich realization [12], cf. also Ref. 
[13]. 

The initial heavy-quark pT-distributions and the relative magnitude of c- and b-quark spectra are 
determined by fitting experimental D- and D*- spectra in d-Au collisions [14] and attributing the missing 
yield of the corresponding semileptonic electrons [15] at higher pT to B-meson decays. This leads to a 
cross-section ratio for b- and c-quark pair production of 4.9·10-3 and a crossing of D- and B-decay 
electrons at pT ~5 GeV, in line with expectations from pQCD.  

The c- and b-quark output spectra from the Langevin simulation are subjected to coalescence with 
light antiquarks following the model of Ref. [16]. Conservation of c- and b-quark number is ensured by 
hadronizing unpaired heavy quarks via δ-function fragmentation. Finally, the single-electron spectra are 
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obtained from D- and B-meson three-body decays. Fig. 1 shows that resonance scattering leads to a 
substantial decrease in RAA and increase in v2 compared to elastic pQCD rescattering. While coalescence 
with light antiquarks amplifies v2, it also leads to harder D- and B-meson momentum spectra, which 
increases the electron RAA. The approach to thermalization of c-quarks leads to a strong quenching of their 
electron-decay spectra, entailing that B-meson decay contributions become prevalent for electron 
momenta of pT >2.5 GeV. This substantially reduces the effects in the single-electron spectra, since b-
quarks (due to their large mass) are much less affected in the sQGP than c-quarks.  

In conclusion, resonance formation in the sQGP could play an essential role in understanding 
current observations on semileptonic single-electron spectra at RHIC. Future calculations should aim at a 
consistent inclusion of radiative energy-loss which is expected to become the dominant effect at (very) 
high pT.  
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Figure 1. Nuclear Modification factor, AAR  (left panel), and elliptic flow, 2v  (right panel), of semileptonic D- and 
B-meson decay electrons in b=7 fm 200 AGeV Au-Au collisions assuming different elastic heavy-quark interactions in 
the QGP with subsequent hadronization via coalescence and fragmentation, compared to PHENIX and STAR data 
[1,2,5,6]. 
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