
Nuclear Symmetry Energy and the Neutron Skin Thickness of Heavy Nuclei

L.W. Chen,¹ C.M. Ko, and Bao-An Li²

¹Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200030, China ²Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR 72467

We have studied in the Skyrme Hartree-Fock model the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy [1]. From the most recent analysis of the isospin diffusion data in heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections, a value of L=88±25 MeV for the slope of the nuclear symmetry energy at saturation has been extracted, and this imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Predicted thickness of the nuclear symmetry energy $E_{sym}(\rho_0)$ and its curvature K_{sym} at saturation density ρ_0 for 21 sets of Skyrme interaction parameters. For ¹³²Sn and ¹²⁴Sn, their neutron skins are predicted to have thickness of 0.29±0.04 fm and 0.22±0.04 fm, respectively.

Figure 1. Neutron skin thickness S of ²⁰⁸Pb as a function of (a) L, (b) K_{sym} , and (c) $E_{sym}(\rho_0)$ for 21 sets of Skyrme interaction parameters. The line in panel (a) represents a linear fit.

[1] L.W. Chen, C.M. Ko, and Bao-An Li, Phys. Rev. C 72, 064309 (2005).