
Diomega Production in Relativistic Heavy Ion Collisions

S. Pal,¹ C.M. Ko, and Z.Y. Zhang²

¹ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 444824 ² Institute of High Energy Physics, Beijing 10039, China

Using a multiphase transport (AMPT) model, we have studied the production of a new strange dibaryon $(\Omega\Omega)_{0^+}$ in dense hadronic matter formed in relativistic heavy ion collisions [1]. The (multi-)strange baryons (Ξ and Ω) are produced by strangeness-exchange reactions between antikaons and hyperons in the pure hadronic phase. The rescattering involving $\Omega(s)$ at midrapidity leads to a production probability of ~ 2.8X10⁻⁶ ($\Omega\Omega$)₀₊ per event for central Au+Au collisions at the RHIC energy of $s_{NN}^{1/2} = 130$ A GeV. The production probability would be enhanced by about one order of magnitude if ($\Omega\Omega$)₀₊ and Ω reach chemical equilibrium during heavy ion collisions. We further find that the yield of ($\Omega\Omega$)₀₊ increases continuously from SPS to the highest RHIC energy as shown in Fig.1.

Figure 1. Energy dependence of Ξ^- , Ω^- , and $(\Omega\Omega)_{0+}$ at midrapidity |y| < 0.5 for heavy ion collisions at impact parameters of b<3 fm in the AMPT model.

[1] S. Pal and C.M. Ko, Phys. Lett. B 624, 210 (2005).