The Structure of 23Al and the Consequences on the 22Mg (p, γ) 23Al Stellar Reaction Rate

Y. Zhai, V.E. Iacob, T. Al-Abdullah, C. Fu, J.C. Hardy, N. Nica, H.I. Park, G. Tabacaru, C.A. Gagliardi, L. Trache, and R.E. Tribble

There is interest in the structure of 23Al due to its nuclear astrophysics significance [1,2]. The ground state spin and parity for 23Al is uncertain, with assignments that include $\frac{1}{2}^+$, $\frac{3}{2}^+$ and $\frac{5}{2}^+$. Currently the NNDC data base gives $\frac{3}{2}^+$ for the 23Al ground state. The mirror nucleus 23Ne has $J^\pi = \frac{5}{2}^+$ for its ground state. Recently it was claimed [3-5] that proton rich 23Al is a halo nucleus. That can be explained only if the last proton in the 2s$\frac{1}{2}$ orbital, not 1d$\frac{5}{2}$ (level inversion), i.e. $J^\pi = \frac{1}{2}^+$ for 23Al. Using $\frac{1}{2}^+$ instead of $\frac{5}{2}^+$, we calculate the astrophysical S-factor and stellar reaction rate for 22Mg (p, γ)23Al and find an increase of 30-50 times over the current estimate for the temperature range T_9=0.1-0.3. This results in a significant depletion of 22Mg before it β decays into 22Na and, if confirmed, could explain the non-observation of the 1.275 MeV γ-ray from 22Na which is the last step of the reaction chain which is named the hot NeNa cycle: 20Ne(p, γ)21Na(p, γ)22Mg(β,v)22Na. Our 23Al β-decay measurement [6] will be used to determine the J^π of the ground state of 23Al.

In 2005, we had three experiments to produce and study 23Al, beginning with production tests at two different 24Mg beam energies, 45 and 48 MeV/u, respectively. At both energies 23Al was produced and separated, but the latter was found more productive. Therefore, we produced 23Al and studied its β-decay using a 48 MeV/nucleon 24Mg beam from the K500 cyclotron via the 24Mg(p, 2n)23Al reaction on a hydrogen gas cryogenic target cell cooled by LN$_2$. The reaction products and projectiles entered the MARS recoil separator where the 24Mg beam was filtered out and the fully stripped reaction products were spatially separated from one another, leaving a relatively pure 23Al beam of about 4000 pps at the extraction slits in the MARS focal plane. Its β-decay was further studied using the fast tape transport system. This was the first time pure and intense 23Al samples were produced and separated. This 23Al beam came out of the vacuum system by passing through a 50 μm thick Kapton window, a 0.3 mm thick BC-104 scintillator, a dummy tape and a stack of aluminum degraders (30.5 mils). A 75-μm thick aluminized Mylar tape on the fast tape-transport system was used to collect 23Al. Because the ranges of impurities in the beam are different from that of 23Al, a pure 23Al sample was collected on the tape. In our measurement, we collected 23Al on the tape for 1 second. Then we shifted the RF phase to stop the 24Mg beam. Following this we moved the 23Al sample in 177 ms with the tape transport system to a counting station which consists of a HPGe γ detector and a β detector. β and β-γ coincidence data were recorded for a predetermined counting period of 3.2 seconds. This cycle was precisely clock controlled and was repeated continuously. The sample was positioned between the HPGe γ-ray detector and a 1-mm-thick BC404 plastic scintillator used to detect β particles. The BC404 was located 3 mm from the sample, while the HPGe was about 4.9 cm away. Time-tagged coincidence data were stored event by event in the computer. This experimental setup [7] is a typical one for measuring β-γ coincidences except that the HPGe detector was closer than usual. In two different parts of the experiment, we first measured the γ energy range 0-4 MeV with good statistics (Fig. 1a), then we measured γ energy range 0-9 MeV for about 20 hours (Fig. 1b). We also separated pure samples of 24Al, by tuning MARS for this product, and...
did a similar β-γ measurement. We use its known gamma-rays up to $E_\gamma=7.8$ MeV for energy and efficiency calibration in the range $E_\gamma=4-9$ MeV.

The ground and first three excited states of 23Mg have $J^\pi=3/2^+,$ $5/2^+,$ $7/2^+$ and $1/2^+$, respectively. All of these states are easily accessible energetically to β-decay from 23Al. Depending on which states are actually populated by allowed GT transitions – as determined by logft values – the spin and parity of the parent ground state can be unambiguously determined. From the measured β singles and β-γ coincidence decay spectrum (Fig. 1) we can get the 23Al β-decay scheme and the branching ratios. We find that it populates directly the $3/2^+$, $5/2^+$ and $7/2^+$ states, but not the $1/2^+$ state. Combined with GT transition rules, we clearly determine that 23Al ground state spin and parity is $J^\pi=5/2^+$. We found preliminary β-branching ratios and logft values for 14 states in total. It so appears that the larger capture rate implied by the lower spin value of 23Al will not explain the missing cosmic 1275 keV cosmic γ-ray.

The future research plan is the following. An additional experiment at TAMU is going to add a BGO shield to the present HPGe γ-ray detector to reduce background in the β-γ decay spectrum of 23Al and increase the ability to detect high energy γ rays. We also need better statistics for the γ energy range 4-9 MeV. So we can get more precise 23Al β-γ decay energy level scheme, β & γ-branching ratio and a precise 23Al half life.

![Figure 1. 23Al β-γ coincidence spectrum.](image)