TRIUMF E-823 — Pure Fermi Decay in Medium Mass Nuclei

J.C. Hardy and V.E. Iacob

The primary goal of the E-823 experimental program is to measure precise half-lives and branching ratios for superallowed 0\rightarrow0\,\beta\,\beta\,\beta\,\beta\,\beta transitions in medium-mass (A > 60) nuclei produced by the new ISAC1 radioactive-beam facility at TRIUMF. These data, together with accurate experimental Q-values expected to be measured with the Canadian Penning Trap (CPT) Mass Spectrometer at the ATLAS facility [1], will be used to extract precise $\beta\,\beta\,\beta\,\beta\,\beta$-values for the superallowed transitions. The $\beta\,\beta\,\beta\,\beta\,\beta$-values will add to the body of data now accumulating for nuclei with $A \leq 54$, improving our knowledge of isospin symmetry-breaking effects in nuclei and possibly improving the precision with which these data can test CVC and the unitarity of the Cabibbo-Kobayaski-Maskawa (CKM) matrix [2]. The experiment at TRIUMF is undertaken as a collaboration among scientists from TRIUMF, Lawrence Berkeley National Laboratory, Simon Fraser University, Argonne National Laboratory, Queen's University and Texas A&M.

The first phase of E-823 was a measurement of the half-lives of the first beams available from ISAC1 in early 1999, namely 36,37,38mK. In particular, the 38mK half-life is well known ($t_{1/2} = 923.95 \pm 0.64$ ms), and provides an important test of the experimental apparatus. In addition, an equally precise measurement of the half-life for 37K is required for an independent test of the Standard Model that is underway at TRIUMF, an experiment which is intended to measure polarization asymmetries in the beta-decay of that nucleus. The next phase of the experiment will be to measure the half-life of 74Rb, an odd-odd, $T_z = 0$ superallowed emitter expected to be available from ISAC1 in late 1999.

Most of the experimental equipment required for the half-life measurements — a tape-transport system and 4\,\pi proportional gas counter with its associated electronics — was salvaged from the now-defunct TASC laboratory at Chalk River, where it had been used for precision half-life measurements of light superallowed emitters in the past. In addition, however, a new 4\,\pi proportional counter built at Texas A&M [3] is being added as a control to reduce possible systematic errors.

Two periods of potassium beam time have already been used at ISAC, in late April and early May, 1999. A large number of independent half-life measurements were made for all three potassium isotopes under a wide variety of experimental conditions. Preliminary analysis shows a high degree of consistency amongst the measurements for each isotope and, for 38mK, there appears to be good agreement with its well-known half-life.

References