

Department of Medical Physics UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

Accelerator production of ⁷¹As from metal germanium targets and cross section measurement of ⁷⁰Ge(d,n)⁷¹As reaction

Yi-Hsuan Lo¹, Anthony Miller³, Graham F. Peaslee³, Jonathan W. Engle^{1,2}, Paul A. Ellison¹

¹Department of Medical Physics and Department of Radiology,²University of Wisconsin School of Medicine and Public Health, Madison, WI

53705, USA

³Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA

Introduction		Methods		Conclusions
The radioisotopes ⁷² As ($t_{1/2} = 26.0$ h, 88% β +) and ⁷¹ As ($t_{1/2} = 65.3$ h, 28% β +), shown in Figure 1, have applications in positron emission tomography (PET) imaging when bound to nanoparticle- [1–3], peptide- [4], and antibody- based [3,5] radiopharmaceuticals. These diagnostic radionuclides have theranostic potential when paired with β emitting therapeutic ⁷⁷ As or, due to the homologous	 Thick ⁷⁰Ge coin targets (10 mm diameter, 150-300 μm thick and ~70 mg) were irradiated with 35 μA of 8 MeV deuterons (GE PETtrace cyclotron) and ⁷¹As quantified by high purity germanium (HPGe) gamma spectroscopy. Use IAEA - Nuclear Data Sheet to monitor the ⁷⁰Ge(<i>d</i>,<i>n</i>)⁷¹As cross section for theoretical physical yield calculation. ⁷⁰Ge(<i>d</i>,<i>n</i>)⁷¹As excitation function will be measured via stacked-foil activation method Stacks containing two target foils (0.41±0.02 μm ^{pat}Ge on ¹⁰/₁Ce on ¹⁰/₁Ce	a b $\int_{a_{170}} \int_{a_{170}} \int_{a_{170}}$	Figure 2: (a) The dimension of custom foil stack holding frame (b) The vertical view of the foil stack show the stacking order of each foil and the arrows	The ⁷⁰ Ge(d,n) ⁷¹ As physical production yield showed inconsistency with theoretical yield, which motivates measurement of the cross section. The cross section measurement at Notre Dame will be performed in August 2023.
Meitner-Auger-electron- (MAe–) emitter ¹¹⁹ Sb. Our previous work reported new production and isolation techniques for the positron-emitter ⁷¹ As. However, our measured yield of ⁷¹ As does not	25.4 μ m Kapton, Astral Technology Unlimited, Inc), a beam monitor foil (15 μ m ^{nat} Ni, Goodfellow Cambridge Ltd), and an energy degrader foil (50 μ m ^{nat} Al, Goodfellow Cambridge Ltd) will be assembled in custom aluminum frames (Figure 2).	C G G G G G G G G G G G G G G G G G G G	indicate incident direction of deuteron (c) An assembled foil stack frame.	Acknowledgments
agree well with the theoretical physical yield computed from ${}^{70}\text{Ge}(d,n){}^{71}\text{As}$ cross section measurement performed by K.Otozai et al. [6].	• Use ^{nat} Ni (d,x) ⁶¹ Cu or ⁵⁶ Co to monitor beam intensity [7] (Figure 3.).	Kapton Ni Al Ge Kapton		This research is supported by the Horizon-Broadening

Therefore, we propose a new measurement of the ⁷⁰Ge(d,n)⁷¹As cross section at the Notre Dame Nuclear Science Laboratory.

As 71	As 72	As 73	As 74	As 75	As 76	As 77	As 78
65.30 n 3 ⁺ 0.8 7175, 1095	26.0 h β ⁺ 2.5, 3.3 γ 834, 630	80.3 d ε no β ⁺ γ 53 ε ⁻	^ε ^{β+} 0.9, 1.5 ^{β-} 1.4 ^γ 596, 635	σ 4.0	26.24 Π β 3.0 γ 559, 657 1216, ε	38.79 Π β ⁻ 0.7 γ 239, 521 250 g	90.7 m β ⁻ 4.4 γ 614, 695 1309
Ge 70 20.52	Ge 71 11.43 d	Ge 72 27.45	Ge 73 7.76	Ge 74 36.52	Ge 75 47.7 s 82.78 m	Ge 76 7.75	Ge 77 53.7 s 11.211 h
5 3.0	ε no γ	σ 0.9	σ 15	σ 0.14 + 0.28	IT 140 e ⁻ , γ (62) β ⁻ γ (136) β ⁻ 1.2 γ 265 199	1.5·10 ² a 2β ⁻ σ 0.09 + 0.06	$\begin{array}{c} \beta^{-} 2.9 \\ \gamma 216 \\ \gamma 16.0 \\ \gamma 216, 416 \end{array} \\ \beta^{-} 2.1 \\ 2.5 \\ \gamma 264, 211 \\ 216, 416 \end{array}$

Figure 1: Section of the chart of the nuclides showing the isotopes of germanium and arsenic. Nuclides in black are stable, red decay by β +/ec, and blue decay by β -.

- Identical foil stacks, shown in Figure 2c, are planned for irradiation at incident deuteron energies of 4, 7, 8 and 10 MeV with a HV FN type Pelletron tandem accelerator in August 2023.
 - **The energy of deuterons** in each foil were estimated based on SRIM ion stopping range calculations [8].
- ⁷¹As, ⁶¹Cu, and ⁵⁶Co will be characterized by HPGe gamma spectroscopy measurements.
- The cross-section will be calculated by **the activation equation** (eq 1, where *I* is the number of incident particles per unit time, *n* is the target nuclei per unit volume, *x* is the target thickness and σ is the cross section).

 $A(t) = R(1 - e^{-\lambda t}) \text{ and } R = Inx\sigma$

Eq 1: The activation equation

the Horizon-Broadening Isotope Production Pipeline program funded by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production, Grant Number DE-SC0022550 (Yennello) and DE-SC0022032 (Ellison).

Thick target irradiation

- The thick Ge_(m) targets (fully and not fully covered) are shown in *Figure 4*.
- After **deuteron irradiation**, Ge_(m) coin-type targets survived well (*Figure 3c*) with ⁷¹As radioarsenic purity >99%.
- The **physical yield** is shown in *Table 1* with the maximum compared with the theoretical physical yield based on calculations using K.Otozai group data [11].
- The experimental physical yield (Table 1) from thick ⁷⁰Ge_(m)

Thin foil cross section measurement

Material	thickness (µm)	Energy (MeV)	Activity (kBq)
			⁷¹ As
	_	10.0	2.10
		9.5	2.23
		8.2	2822.50

- The average deuteron energy, and expected ⁷¹As, ⁶¹Cu, and ⁵⁶Co activities [6,7] in each target foil (Table 2) and beam monitor foil (Table 3) after a 4 h, 0.1 µA irradiation.
- The ⁷⁰Ge(d,n)⁷¹As activation function and planned incident deuteron energies are shown in **Figure 5**.

⁷⁰Ge(d,x)⁷¹As

Reference

1. F. Chen et al., Angew. Chemie Int. Ed. 52 (2013) 13319–13323.
2. P.A. Ellison et al. Bioconjug. Chem. 27 (2016) 179–188.,
3. P.A. Ellison et al. ACS

coin targets showed inconsistency with the predicted physical yield (6.3 MBq $\cdot\mu$ A⁻¹ \cdot h⁻¹).

a	
	Figure 4: The $Ge_{(m)}$ target a) fully covered Ge(m) target and b) 79% covered target c) irradiated $Ge_{(m)}$ target
imated Ge mass Ge	e Experimental Theoretica

⁷¹ As eld n h-1)	Theoretical ⁷¹ physical yiel (MBq⋅µA-1⋅h-	Experimental ⁷¹ As physical (MBq·µA-1·h-1)	Ge thickness (µm)	Ge mass (mg)	Estimated coverage (%)
2		6.1 ± 0.1	285 ± 22.5	100.1 ± 0.1	100
2	- 6.20	5.91 ± 0.04	152 ± 6	68.8 ± 0.2	100
Z	- 0.29	5 ± 1	150 ± 30	87.4 ± 5.2	78 ± 7
Z		4.1 ± 0.5	280 ± 50	69.1 ± 0.5	79 ± 8

Table 1: Cyclotron yields at 8 MeV from coin-type ⁷⁰Ge targets

Ge		0.8	2.49
	0.4	7.6	2.44
	0.4	6.8	2.25
		5.8	1.64
		5.5	1.41
		4.2	0.45
		2.2	0.01

Table 2: The energy of deuteron for ^{nat}Ge foil and the calculated activity for $^{nat}Ge(d,x)^{71}As$.

Material	thickness (µm)	Energy (MeV)	Activity (kBq)		
			⁶¹ Cu	⁵⁶ Co	
Ni	-	9.4	2822.50	4.25	
		8.9	3144.22	4.13	
	15	7.3	3545.18	3.25	
		6.0	3028.43	2.26	
		4.5	2125.21	1.17	
Table 3: The energy of deuteron for ^{nat} Ni foil and the calculated activity for ^{nat} Ni(d,x) ⁶¹ Cu and ^{nat} Ni(d,x) ⁵⁶ Co					

deuteron energy

Appl. Mater. Interfaces. 9 (2017) 6772–6781.,
4. Y. Feng et al., Nucl. Med. Biol. 61 (2018) 1–10.,
5. M. Jennewein et al., Clin. Cancer Res. 14 (2008) 1377– 1385.,
6. K.Otozai et al., Nucl. Phys. A. 107 (1968) 427-435.,
7. A. Hermanne et al., Nucl. Data Sheets 148 (2018) 338-382.
8. James F. Ziegler et al., Nucl. Instrum. Methods Phys.

Res. B: 268 (2010) 1818–1823