

Horizon-Broadening Isotope Production Pipeline Opportunities

CYCLOTRON FACILITY

Production and radiochemistry of theranostic radioscandium nuclides

Shelbie J. Cingoranelli^{a,b}, Volkan Tekin^b, Hailey A. Houson^b, Emily E. Putnam^{a,b}, Suzanne E. Lapi^{a,b}

^aDepartment of Chemistry, University of Alabama at Birmingham, 35294 ^bDepartment of Radiology, University of Alabama at Birmingham, 35294

hydroxide to precipitate out

Introduction

Theranostics incorporates the same targeting compound with different radionuclides. The clinical theranostic pair, ⁶⁸Ga and ¹⁷⁷Lu, can exhibit different pharmacokinetics between the diagnostic and therapeutic compounds, respectively. An elementally matched theranostic pair will result in identical complexation, in vitro binding, and in vivo pharmacokinetics, as the diagnostic and therapeutic compounds are chemically identical. A target recycling method was developed for high purity ⁴³Sc and ⁴⁷Sc using enriched [⁴⁶Ti]TiO₂ and [⁵⁰Ti]TiO₂, respectively. The produced 43 Sc/ 47 Sc will be used for exploring their theranostic potential.

Development of enriched TiO, target lifecycle

Step 4

Figure 1: The decay scheme the radioscandium isotopes of medical interest: ⁴³Sc and ⁴⁷Sc

PSMA-617 therapy while being monitored using ⁶⁸Ga-**PSMA-11**.

Figure 3: The target lifecycle of enriched TiO₂ for radioscandium production

Table 1: Trace metal analysis of collected ⁴⁷Sc f

 43 Sc

					activity yields dec	ay com
recycle	ed ⁵⁰ Ti targets			for recycled target	LS L	-
	Cycle: 1 (ppb)	Cycle: 4 (ppb)	Cycle: 6 (ppb)	Production of ⁴³ Se	c from a single enri	ched ⁴⁶
Zn	430	47	29	Activity	Cycle 1	(
Cr	311	<15	<15	MBq	499	
Mn	340	<15	<15	mCi	13.5	
Fe	1,433	129	<15	Production of ⁴⁷ Se	c from a single enri	ched ^{50'}
Ni	189	<15	<15	Activity	Cycle 1*	(
Cu	263	11	<15	MBq	110	
Pb	2,172	<15	<15	mCi	2.97	
W	10,170	53	32			
	·					

Table 3: Activity of each radioscandium in the

^{44m}Sc

• Filter using mixed cellulose	for1.5 h		
Step 5		[⁵⁰ Ti]TiO ₂ bombard with	
 Remove and add into beaker heat at 250°C for at least 24 h 	24 MeV at 20 μ for 4 or 8 h		
he titanium target recycle proce	edure (A). Th	ne titanium dioxide	

 48 Sc

bombard with

24 MeV at 20 µA

Total radioscandium

Figure 4: T lioxide target design, pressed $[^{50}Ti]TiO_2$ and target bombardment parameters (B).

t collected ⁴	'Sc from	Table 2: The total	activity yields deca	ay corrected to end	of bombardment
		for recycled target	S		
e: 4 (ppb)	Cycle: 6 (ppb)	Production of ⁴³ Se	c from a single enri	ched ⁴⁶ Ti target bor	nbarded for 1.5 h
47	29	Activity	Cycle 1	Cycle 2	Cycle 3
<15	<15	MBq	499	540	529
<15	<15	mCi	13.5	14.6	14.3
129	<15	Production of ⁴⁷ Sc	e from a single enric	ched ⁵⁰ Ti target bor	nbarded for 8-9 h
<15	<15	Activity	Cycle 1*	Cycle 4	Cycle 8
11	<15	MBq	110	85.1	84.7
<15	<15	mCi	2.97	2.3	2.29
53	32				
oscandium i	in the purified coll	ection vial			
Activity co	rrected to end of b	ombardment for the	collected 43 Sc: (n =	= 3)	

 47 Sc

	F3: Colum	an l	F4-F6 ^{, 43} Sc or	Table 5: Th	ne separat	ion results			
Diluted to 10 mL 10.5 M	conditio	n	⁴⁷ Sc	Isotope	Starting	FT & Washes	E4	E5	E6
HCI	FT: Ti and	E1: Ti and	E1: Ti and E2: Trace metal		14±0.6	1.3±0.1	12.±0.1	0.1±0.08	0.2±0.01
	⁴⁸ V	⁴⁸ V	contaminants	$^{48}V(\mu Ci)$	67±7.7	74±15.7	0	0	0
Figure 5: The dissolution method for $[^{46}\text{Ti}/^{50}\text{Ti}]\text{TiO}_2$ (A), the					1.4 ± 0.1	0.1 ± 0.02	1.2 ± 0.1	0.1±0.01	0.1±0.01
separation method (B).				$^{48}V(\mu Ci)$	224±11	256±10	0	0	0

Activity mCi	13.6 ± 0.7	< 0.01	0.14 ± 0.01	< 0.01	0.01 ± 0.01	< 0.01	$13.9 \pm .7$			
Percentage	98.5 ± 0.3	$0.02 \pm < 0.01$	1.02 ± 0.1	$0.01 \pm < 0.01$	$0.07 \pm < 0.01$	< 0.01	100			
	Activity corrected to end of bombardment for the collected $^{47}Sc: (n = 3)$									
Isotope	⁴³ Sc	⁴⁴ gSc	^{44m} Sc	⁴⁶ Sc	⁴⁷ Sc	⁴⁸ Sc	Total radioscandium			
Activity mCi	Decayed	0.04 ± 0.01	0.04 ± 0.01	0.04 ± 0.01	1.3 ± 0.17	< 0.01	1.6 ± 0.3			
Percentage	0	2.97 ± 0.6	2.97 ± 0.6	2.42 ± 0.4	91.1 ± 0.6	< 0.01	100			

 46 Sc

 ^{44g}Sc

Methods

Radiolabeling

Radiolabeling was performed in 0.25 M ammonium acetate buffer pH 4.7, at 95°C, shaking at 800 rpm for 30 minutes. Either DOTA or PSMA-617 was used for complexation. A DOTA titration with 80-100 μ Ci was used for determining apparent molar activates for different target cycles. The molar activities of [⁴³Sc]Sc-PSMA-617 was 208 µCi/nmol. ^{[4x}Sc]Sc-DOTA was confirmed using iTLC-SG in 1 M citrate buffer. [⁴³Sc]Sc-PSMA-617 was confirmed using HPLC.

In vivo analysis

Athymic nude male mice were implanted with either LNCaP (PSMA+) or PC3 (PSMA-) cells and allowed time for tumor growth. Mice were injected (tail-vein) with either [⁴³Sc]Sc-PSMA-617 or $[^{43}Sc]Sc-PSMA-617$ with 5 mg/kg of 2-PMPA. Mice were scanned for 30 min at 1 or 4 h on Sofie PET scanner, followed by CT and Biodistribution

Radiochemistry of ⁴³Sc and ⁴⁷Sc

Isotope

Figure 7: The HPLC trace of the ⁴⁷Sc-PSMA-617 complex (pink) overlaid with free ⁴⁷Sc (black).

Table 6: The apparent molar activity of [⁴³Sc]Sc-DOTA and

 ⁴⁷Sc]Sc-DOTA

Apparent molar Target Apparent molar Target Isotope activity activity cycle cycle 43 Sc 2^{nd} 628 mCi/µmol $160.3 \text{ mCi/}\mu\text{mol}$ 47 Sc 34 mCi/µmol 91.7 mCi/µmol

Figure 8: The tumor uptake comparisons (A) and SUV comparisons (B) of ⁴³Sc-PSMA-617 in Figures 9 and 10.

Figure 9: The 1 h coronal and transversal PET image of PSMA+ mice (A), PSMA+, co-injected with 5 mg/kg 2-PMPA mice, (B), PSMA-mice (C), and

4 h PSMA+ mice. (D)

Figure 10: The biodistribution of ⁴³Sc-PSMA-617 injected mice at 1 h (pink) and 4 h (pink). (A) The 1 h biodistribution of ⁴³Sc-PSMA-617 PSMA+ (pink), blocking (black) and PSMA-(gray). (B)

Conclusions

An enriched [xxTi]TiO₂ lifecycle was developed that resulted in reproducible radioscandium yields, increased the purity of both target material and purified radioscandium. The AMA of ⁴³Sc and ⁴⁷Sc increased with the target cycle. ⁴³Sc-PSMA-617 *in vivo* results establishes stability and specificity for PSMAtargeted theranostic.

Future Directions

Continued analysis of titanium targets passed cycle 8. Analysis of additional chelators with high purity ⁴³Sc and ⁴⁷Sc. SPECT imaging of ⁴⁷Sc-PSMA-617 will be conducted at longer timepoints. An *in vivo* therapy study will follow with ⁴³Sc-PSMA-617 to be used for monitoring treatment response of ⁴⁷Sc-PSMA-617.

References

1.Kratochwil, C., et al. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with ¹⁷⁷Lu-Labeled PSMA-617. J Nucl Med 2016, 57 (8), 1170-6

2.Loveless, C. S. et al. Cyclotron Production and Separation of Scandium Radionuclides from Natural Titanium Metal and Titanium Dioxide Targets. *Journal of Nuclear Medicine* **2021**, *62* (1), 131-136. 3.Domnanich, K. A, et al. Production and separation of ⁴³Sc for radiopharmaceutical purposes. *EJNMMI* Radiopharmacy and Chemistry 2017, 2 (1), 14.

Acknowledgments

The authors would like to acknowledge the Lapi Lab group members, the Cyclotron Facility, the SAIF Facility and the UAB Machine Shop for their work in this project

The UAB cyclotron facility is a member of the Department of Energy University Isotope Network and is supported through DESC0020197 (PI Lapi). This work was supported in part by the Department of Energy Isotope Program's DE-SC0022550, the Horizon-broadening Isotope Production Pipelin Opportunities (HIPPO) program. This work was also supported by the Small Animal Imaging Core through O'Neal Cancer Center P30CA013148, and the Alabama Graduate Research Scholars Program (GRSP) funded through the Alabama Commission for Higher Education and administered by the Alabama EPSCoR