

NUCLEAR ENGINEERING

COLLEGE OF ENGINEERING | THE UNIVERSITY OF UTAH

Electrodeposition methods for an ²²⁵Ac/²¹³Bi radionuclide generator with gold/silver nanolayers Melanie Guerrero¹, Brock Mower¹, George Diehl¹, Connor Holiski¹, Tara Mastren¹ ¹The University of Utah - Nuclear Department,

INTRODUCTION

Main Idea

Bismuth-213 is a short-lived ($t_{1/2}$ =45.6 min) a-emitter of interest for targeted alpha-therapy (TAT).¹ Due to its short half-life, on-site ²²⁵Ac/²¹³Bi radionuclide generators are required for research and clinical use. Current ²²⁵Ac/²¹³Bi radionuclide generators use inorganic resins that fail at activities required for clinical use (> 100 mCi) due to the high linear energy transfer of a-particles.² This makes the development of novel generators with high radiolytic stability crucial to the success of ²¹³Bi-TAT radiotherapeutics.

Utilizing the Recoil Effect to Separate ²²⁵Ac and ²²¹Fr Radionuclides During ²²⁵Ac alpha decay, ²²¹Fr receives ≈ 105 keV kinetic energy due to conservation of momentum which allows for the physical separation of ²²⁵Ac and its daughter products. From this, we'll be able to develop a novel radionuclide generator system by electroplating ²²⁵Ac onto Ni or Cu metal foils. Additionally, a thin Au/Ag coating is required enhance ²²⁵Ac retention.

METHODS

<u>Electroplating cell setup</u>

- Platinum wire anode
- Metal foil (Ni or Cu) cathode
- 3 mL of solution with stirring (1 ml/min)
- Varied time, concentration, and voltage

Stopping Range of Ions in Matter (SRIM)³

- Monte Carlo program used to model charged particles traveling through different materials
- Estimated thickness of Au and Ag needed to maximize daughter escape

<u>Scanning electron microscopy (SEM)</u>

- Imaged foils to access coating uniformity and roughness
- Confirmed metal coating with EDS (not pictured)
- Inductively coupled plasma-mass spectrometry (ICP-MS)
- Dissolved Ag/Ni foils in 6 M nitric acid with heat
- Determined total Ag addition

Ni foils dissolved in Nitric Acid

1 mg/ml HAuCl

0.1 mg/ml HAuCl

	Volts (V)	Time (min)	Metal (µg)	Thickness (nm)	Ag deposited (%)
to	2	1	3.7	2.8	19.33
	2	5	5.6	4.2	29.15
	2	15	12.0	9.0	62.89
	2	30	15.1	8.9	62.21
	2	60	1 <mark>6.</mark> 8	3.8	26.47
nd	2	90	11.6	7.1	49.56
	2	120	14.6	11.4	79.30
	0.8	30	9.4	12.7	88.35
	1	30	5.0	8.7	60.94
	1.5	30	11.9	11.0	76.70