
ResultsIntroduction

Terbium-based radiopharmaceuticals currently 
show good potential within the field of 
theragnostics [1]. Specifically, 152Tb (t½= 17.4 h, 
20% β+, ec decay) and 155Tb (t½= 5.34 d, ec 
decay) for diagnosis and 161Tb (t½= 6.89 d, β– 
decay) and 149Tb (t½= 4.12 h, 17% α, ec, β+ 
decay) for therapy are sought for their ability as a 
“theragnostic quartet.” To produce 
pharmaceuticals containing these radiometals, an 
efficient separation and isolation process is 
necessary for Tb. Pure, no-carrier added 161Tb is 
produced through the 160Gd(n,γ)161Gd(β–)161Tb 
reaction in nuclear fission reactors. Thus, 
separating terbium from massive gadolinium 
targets is currently a barrier to producing high 
specific activity terbium pharmaceuticals. This 
abstract proposes a separation method using LN2 
extraction chromatography (EXC) resin, which 
has been tailored for adjacent lanthanide 
separation.

Separation Process

Resin

• 20-50 µm bead size LN2 extraction 
chromatography resin; dry packed into 300 mg 
column and mobile phase was flowed through 
column at 1 mL per minute

Loading Mass Determination

• All trials utilized 500 µg Tb

• Gd mass was tested at 500 µg, 2.5 mg, 9.5 mg, 
and 19.5 mg

Mobile Phase Volume Optimizations

• Prep: 3 mL of 1 M HNO3 followed by 14 mL 
of 0.1M HNO3

• Loading: 5.6 mL of 0.1 M HNO3. Gd and Tb 
standards were dried down to fit into this mass

• Rinse: 12 mL of 0.2 M HNO3 collected in 
fractions of 1– 3 mL fractions

• Elute: 3 mL of 1 M HNO3 collected in 0.5 mL 
fractions.

Analysis

• All trace-metal analysis was performed on 
Agilent’s microwave plasma atomic emission 
spectrometer (MP-AES)

Gadolinium Recycling

               Motivations
• Production of no-carrier-added Tb-161 would require the 

use of enriched Gd-160, which is expensive. A recycling 
process of target material from Gd(NO3)3 to Gd2O3 would be 
required to optimize the Tb-161 production process. 

                                         Methods
• The load and rinse fractions of an LN2 column loaded with 

19.5 mg Gd were collected and dried with argon gas (60 
mL/min) at 130 C yielding Gd(NO3)3·6H2O. 

• Residue was heated to 400 C to decompose the nitrate to 
oxide (Gd2O3). 

• Masses of  the recovered Gd were measured at various steps 
and compared with expected mass loaded onto the LN2 
column.

• This trial has promising indications for Gd target recycling
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Gd/Tb Separation Factor (%Tb recovery)

Loaded Gd/Tb mass 9 mL of 0.2 M 
HNO3

10 mL of 0.2 M 
HNO3

12 mL of 0.2 M 
HNO3

1 mg 900 (98%) 2000 (95%) 6100 (88%)

3 mg 700 (95%) 900 (91%) 1100 (82%)

10 mg 1900 (84%) 2700 (81%) 10000 (70 %)

20 mg 1300 (72%) 1400 (68%) 1500 (58%)

Results and Discussion

Future Production

Figure 2: A representation of the LN2 column and 
peristaltic pump used in all separation trials. 
Liquid was flowed through at 1 mL/min

Table 1: Separation factor and terbium percent recovery 
calculated after 9 mL rinse, 10 mL rinse, and 12 mL rinse.

Figure 1: Elution profiles of 
different columns. 
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• For columns loaded with 1 
mg Gd/Tb, no Gd or Tb 
can be seen passing 
through the column prior 
in the loading solution

• As column size increases 
to 20 mg, the Terbium 
peak shrinks and the 
Gadolinium peak is 
observably less defined

• In the 10 mg and 20 mg 
columns, more Terbium 
elutes earlier, resulting in 
more overlapping of Gd 
and Tb peaks
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Calculations based on literature yields [3] were made to determine 
theoretical yield of Tb-161 from enriched Gd-160 targets at the UW-
Madison Nuclear Reactor Facility.

UW Nuclear Reactor Considerations
• 1.1 x 1013 n/cm2/s neutron flux 
• Possible irradiation time – any lengths over 1 day are likely not 

feasible. Due to time constraints, the Physical Yield of 5.5 µCi/mg/h is 
more applicable than the Saturation Yield of 1.3 mCi/mg.

Theoretical Yield
• A 4-hour irradiation of 100 mg 160Gd2O3 would produce 2.2 mCi 161Tb
o Sufficient for in vitro 161Tb-based radiopharmaceutical evaluation

Objective: Maintaining both a high Gd/Tb separation factor (>1000) 
and a high Tb % recovery (>90%)
• Tb percent recovery drops as Gd mass increases
• Separation factor for a given Tb recovery drops as Gd mass 

increases
• Separation must optimize both of these factors
However …
• The 300 mg LN2 column still adequately separated Tb and Gd up 

to 20 mg total (~90% of its theoretical capacity) 
• Eluting Terbium between 9 and 12 mL 0.2 M HNO3 in all trials 

maintains the highest Sf and % recovery

Gd/Tb Separation Factor equation:

𝑮𝒅	𝑩𝒆𝒇𝒐𝒓𝒆
𝑮𝒅	𝑨𝒇𝒕𝒆𝒓
𝑻𝒃	𝑩𝒆𝒇𝒐𝒓𝒆
𝑻𝒃	𝑨𝒇𝒕𝒆𝒓

SfGd/Tb    =

Gd(NO3)3 · 
6H2O Gd2O3

Theoretical 
Yield (mg) 45.94 21.15

Actual Yield 
(mg) 48.15 20.7

Percent 
Yield 105% 98%

Figure 3: Yields of 
different forms of 
recycled Gd

30 mm x 5.5 mm ⌀ column
  300 mg LN2, 20-50 µm
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