THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Production and Purification of ⁴⁷Sc from ^{nat}V Targets

Putnam, E. E., Cingoranelli, S.J., Lapi, S. E. ¹ Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294 ² Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294

Radiolabeling

Studies were conducted to determine the apparent molar activity (AMA) of the purified ⁴⁷Sc

First, ⁴⁷Sc was evaporated down to dryness and was then brought up in 100µL of 0.1 M HCl. A 5 mg/mL stock of DOTA (1,4,7,10 Tetraazacyclodecane-1,4,7,10tetraacetic acid) was made and set aside for serial dilutions for different concentrations of DOTA. Samples were made by adding 80-100 µCi of ⁴⁷Sc in each vial of 0.25 M ammonium acetate pH 4 and the carrying concentration of DOTA (performed in triplicates). These samples were then heated and vortexed at 95°C at 800 rpm for 30 minutes. After the 30 minutes time point, the samples were then analyzed by utilizing a SG-iTLC developed in 1 M citrate buffer to determine labeling.

Apparent Molar Activity (AMA): 205.39±3.5 mCi/µmol for [⁴⁷Sc] Sc-DOTA

SPECT Imaging

Figure 16: A, SPECT image using mouse phantom. B, SPECT image using a Derenzo phantom.

> Preliminary Single-Photon Emission Computed Tomography (SPECT) images using phantoms (Figure 14) were conducted to investigate the imaging properties and quality of the produced ⁴⁷Sc.

Conclusions

Production of high purity ⁴⁷Sc from proton bombardment of ^{nat}V foils have been shown to be feasible and provide high recovery when separated, and preliminary studies conducted determined the AMA of recovered ⁴⁷Sc by radiolabeling to DOTA showed promise for further use of this radionuclide.

Acknowledgements

This project was supported by the DOE isotope program through grant DESC0020197 (P.I. Lapi). This work is supported in part by the Horizon-Broadening Isotope Production Pipeline Opportunities (HIPPO) program under grant DE-Sc0022550 from the Department of Energy's Isotope R&D and Production Program. The authors acknowledge the support of all team members of Dr. Lapi's group, UAB Cyclotron Facility and the UAB machine shop.

uab.edu

