Post Synthetic Metal Extraction into Nanoparticles Reduces Preparation Time and Enhances Payload for Bimodal Imaging Probes

Edith Amason^{1, 2}, Durva Patel¹; Emily Que Ph.D.¹ and Eszter Boros Ph.D.² ¹Department of Chemistry, College of Natural Sciences, The University of Texas at Austin; ²Department of Chemistry, College of Letters and Science, University of Wisconsin-Madison

data the Z-average and polydispersion index (PDI) are calculated (F).

**Relaxation times are measured by ¹⁹F-NMR with respect to PFCE by standard Inversion Recovery and CPMG experiments

Improving Selective Metal Ion Extraction

iron Known varying results eliminating MSN shell bound iron.

- EDTA shows the least promising results with iron removed from the fluorous phase and left on the particles
- Deferasirox shows the most promise removing shell bound iron without competing for fluorous iron

Future Work Incorporating Radiometals

After radiolabeling experiments have been optimized there is potential for in vivo work to be conducted and for dual ¹⁹F MR-PET images to be acquired.

[1] Wang, C.; Leach, B. I.; Lister, D.; Adams, S. R.; Xu, H.; Hoh, C.; McConville, P.; Zhang, J.; Messer, K.; Ahrens, E. T Metallofluorocarbon Nanoemulsion for Inflammatory Macrophage Detection via PET and MRI. J. Nucl. Med. 2021, 62 (8), 1146–1153. [2] Chaple, I. F.; Houson, H. A.; Koller, A.; Pandey, A.; Boros, E.; Lapi, S. E. 45Ti Targeted Tracers for PET Imaging of PSMA. Nucl. Med. Biol. 2022, 108–109, 16–23. [3] Nakamura, T.; Sugihara, F.; Matsushita, H.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Mesoporous Silica Nanoparticles for 19 F Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Chem. Sci. 2015, 6 (3), 1986–1990. [4] King, T. L.; Esarte Palomero, O.; Grimes, D. A.; Goralski, S. T.; Jones, R. A.; Que, E. L. Modulating Extraction and Retention of Fluorinated β-Diketonate Metal Complexes in Perfluorocarbons through the Use of Non-Fluorinated Neutral Ligands. Inorg. Chem. Front. 2021, 8 (20), 4488-4496 [5] Koller, A. J.; Saini, S.; Chaple, I. F.; Joaqui-Joaqui, M. A.; Paterson, B. M.; Ma, M. T.; Blower, P. J.; Pierre, V. C.; Robinson, J. R.; Lapi, S. E.; Boros, E. A General Design Strategy Enabling the Synthesis of Hydrolysis-Resistant, Water-Stable Titanium(IV) Complexes. Angew. Chem. Int. Ed. 2022, 61 (22).

This work is supported in part by the following funding agencies: The National Science Foundation Graduate Research Fellowship (NSF-GRFP), The Welch Foundation, The Cancer Prevention and Research Institute of Texas, and the Horizonbroadening Isotope Production Pipeline Opportunities (HIPPO) program, under Grant DE-SC0022550 from the Department of Energy's Isotope R&D and Production Program.

adding the fluorous phase to MSNs does not alter the relaxation time.

MSNs with acac-FH have a noticeable decrease in T_1 and T_2 after the addition of iron(III) citrate to the solution.

Additional iron is not extracted into the fluorous phase after the initial extraction.

CANCER PREVENTION & RESEARCH Institute of Texas

extracted into is MSNs but remains on outer silica shell,

- Silica bound iron alters relaxation times (A)
- washing agents (B).

References

Acknowledgements