

Introduction

- Delays in the transportation of radioisotopes cause unnecessary exposure of personnel and loss in yield
- Automation of this process addresses both issues
- Proper mechanical and thermodynamic design allows for the implementation of an autonomous retrieval process using a robotic arm.

Methods

- The design of the target chamber is created in SolidWorks
- The convective coefficient was then calculated manually with respect to the design geometry
- The convective coefficient was then used in the FEMM 4.2 simulations
- The nature of the flow of helium was analyzed to determined the flow velocity using ANSYS CFX. This was used to update the convective coefficient calculations
- The design was then optimized for robotic retrieval
- An easily operatable flange for the robotic arm was designed and implemented into the target chamber design

Robotiq 2F-85 Gripper Arm

Acknowledgements

This work is supported in part by the Horizon-broadening Isotope Production Pipeline Opportunities (HIPPO) program, under Grant DE-SC0022550 from the Department of Energy's Isotope R&D and Production Program, and also, in part, by funding from the Argonne Laboratory Directed Research and Development Program. Supported by the Argonne LDRD program.

Target Chamber Design for Autonomous Target Retrieval

D. Thomas¹, Y. S. Park³, J. A. Nolen²

¹ Cyclotron Institute, Texas A&M, College Station, Texas ² Department of Physics, Argonne National Lab., Illinois ³ Applied Materials Division, Argonne National Lab., Illinois

