
Why 211At?
• The successful clinical trial performance of alpha emitters, such as 

225Ac-PSMA, has increased interest in targeted alpha therapy (TAT).1

• One promising isotope for use in TAT is 211At with a moderately short 
half-life and simple, 100% alpha-emitting decay scheme (1 
alpha/decay) making it well suited for use in a clinical setting.

• With little known about the fundamental chemistry of astatine, a 
better understanding is necessary for progress in TAT and superheavy 
element chemistry (as astatine is a homologue of the recently 
discovered element 117, tennessine).3

• There are very few facilities with the capability of producing 211At 
which, alongside the small quantity produced during each irradiation 
and short half life (t½ = 7.2 h), make the recovery of 211At important.
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PET/CT scans of a patient receiving doses of 
225Ac-PMSA-617, a PSMA-based alpha therapy.1
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Decay scheme of 211At.

Standard production pathway 
for 211At via 209Bi(α,2n)211At. Automatic Dissolution Apparatus (ADA).3

Target preparation procedure for metallic bismuth targets.

Procedure for target dissolution and astatine recovery after irradiation overnight.
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Reducing agent: hydrazine hydrate (NH2NH2 • H2O)
   

Oxidizing agent: potassium dichromate  (K2Cr2O5)

Percent of bismuth dissolved from targets in various 
concentrations of nitric acid.

Concentration of bismuth in solution (analyzed by ICP-
OES) at various timepoints in the dissolution.

Percent of bismuth dissolved from targets by various target preparation 
parameters and dissolution techniques.

Percent of bismuth dissolved from targets prepared 
normally and purposefully oxidized using different 
methods of dissolution.

Chromatograph showing the elution of 211At from the 3-
octanone impregnated column using various solvents.

Chromatograph showing the relative activity of 
fractions using MeOH to strip a loaded column.

Chromatograph showing the relative activity of 
fractions using 1 M NaOH to strip a loaded column.

RadioTLC of the first eluted methanol fraction 
before and after adding 10 µL of reducing agent.

RadioTLC of the fourth eluted 1 M NaOH fraction 
initially and after adding 10 and 30 µL of oxidizing 
agent.

RadioTLC of the first eluted 1 M NaOH fraction 
initially and after adding 10, 20, and 30 µL of reducing 
agent.

Motivations 
• In the past, target dissolution has been inconsistent with some targets 

not fully dissolving in the expected time. This leads to loss of 211At 
which, due to the already small quantity produced, is a pressing 
issue. 

• Our procedure for 211At recovery involves stripping 211At from 3-
octanone impregnated porous beads using ethanol. This process also 
strips the ketone, failing to result in free At. Using a different 
stripping agent, one that doesn’t strip the ketone, would result in free 
At.

• With little known about the fundamental chemistry of astatine, 
studies on its affinity for various species and oxidation state are 
important to get a better picture.

Further Work
• Implementing solution agitation into ADA.

• Testing saline, dichloromethane, and 
chloroform as stripping agents.

• Attempting to change oxidation state of 
astatine before loading onto the column.

XPS spectrum of regularly prepared target. XPS spectrum of an intentionally-oxidized target.

Surface Characterization of Bismuth Targets
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Conclusions
• When testing different nitric acid concentrations to dissolve cold bismuth 

targets, it was found that 9 M and 10 M had no significant difference in 
percent dissolution.  

• Analyzing the dissolution solution at different time points shows that there 
is a diminishing return as time progresses. This is also evidence of an 
inefficient dissolution method.

• Time, and in turn oxidation, negatively affect the dissolution of targets.

• Agitation of solution allows for a consistent, fast dissolution compared to 
still solution. This is also true for older, oxidized targets.

Conclusions

• Water was unable to strip a significant quantity of 211At.

• Methanol yielded the same results as ethanol has shown in previous 
separations.

• Three concentrations (0.005, 0.1, and 1 M) of NaOH were tested 
sequentially on a single column. This resulted in significant activity 
stripped with the 1 M NaOH but did not yield the same results when 
repeated on a separate column. 

Conclusions
• The first eluted 1 M NaOH fraction has the expected (based on 

previous experiments) peaks. The fourth eluted fraction has 
interesting peaks, possibly caused by the lack of 3-octanone to 
stabilize it.

• The MeOH fraction was able to be reduced and shows similar 
behavior to EtOH reductions.
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