Development of ⁵²⁹Mn for Diagnostic Applications in Positron Emission Tomography at UW-Madison

Yun-Hsuan Lee a, Kendall E. Barrett b, Jonathan W. Engle b

^a Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720

b Department of Medical Physics, University of Wisconsin – Madison, Madison, WI 53705

HIPPO Summer Workshop, LANL July 24-29, 2022

Introduction

Interests in positron emission tomography (PET) applications of manganese radionuclides have been motivating further studies in ^{52g}Mn production, separation and labeling.

The production of 52g Mn ($t_{1/2} = 5.591$ d, $I_{\beta^+} = 29.4\%$, $E_{\beta,avg} = 241.6$ keV) via the nat Cr(p,x) 52g Mn pathway is routinely carried out at UW Madison's low-energy cyclotron¹. After irradiation, the residual chromium target material and other trace metals must be removed. Impurities could negatively impact the effectiveness of labeling and inhibit further biological studies due to excess toxicity.

While ^{52g}Mn labeling has been achieved with chelating agent DOTA, the promising potential of Mn-specific chelators and other chelators of high biostability are still under research.

Methods

Production

Natural chromium was electroplated or hydraulically pressed onto silver disks to create targets for 12-16 MeV proton irradiation at the GE PETtrace cyclotron. (See Fig. 1.)

Figure 1. Electroplated ^{nat}Cr target. In collaboration with Dr. M. Chernysheva.

Theoretical calculations, which adopted atomic and nuclear data retrieval and interpolation by python toolkit Curie, were performed for yield predictions³.

Separation

After irradiation and letting 52m Mn ($t_{1/2}$ = 21.1 min, E_{γ} = 1434.06 keV) decay, the target was dissolved and 52g Mn was separated from the solution¹. The separation process is summarized in Fig. 2. The Actinide ResinTM chosen has relatively higher affinity for Mn²⁺

than for Cr³⁺ in HCl of lower than 5 M concentrations, allowing ^{52g}Mn to remain in the columns while target material is removed⁴.

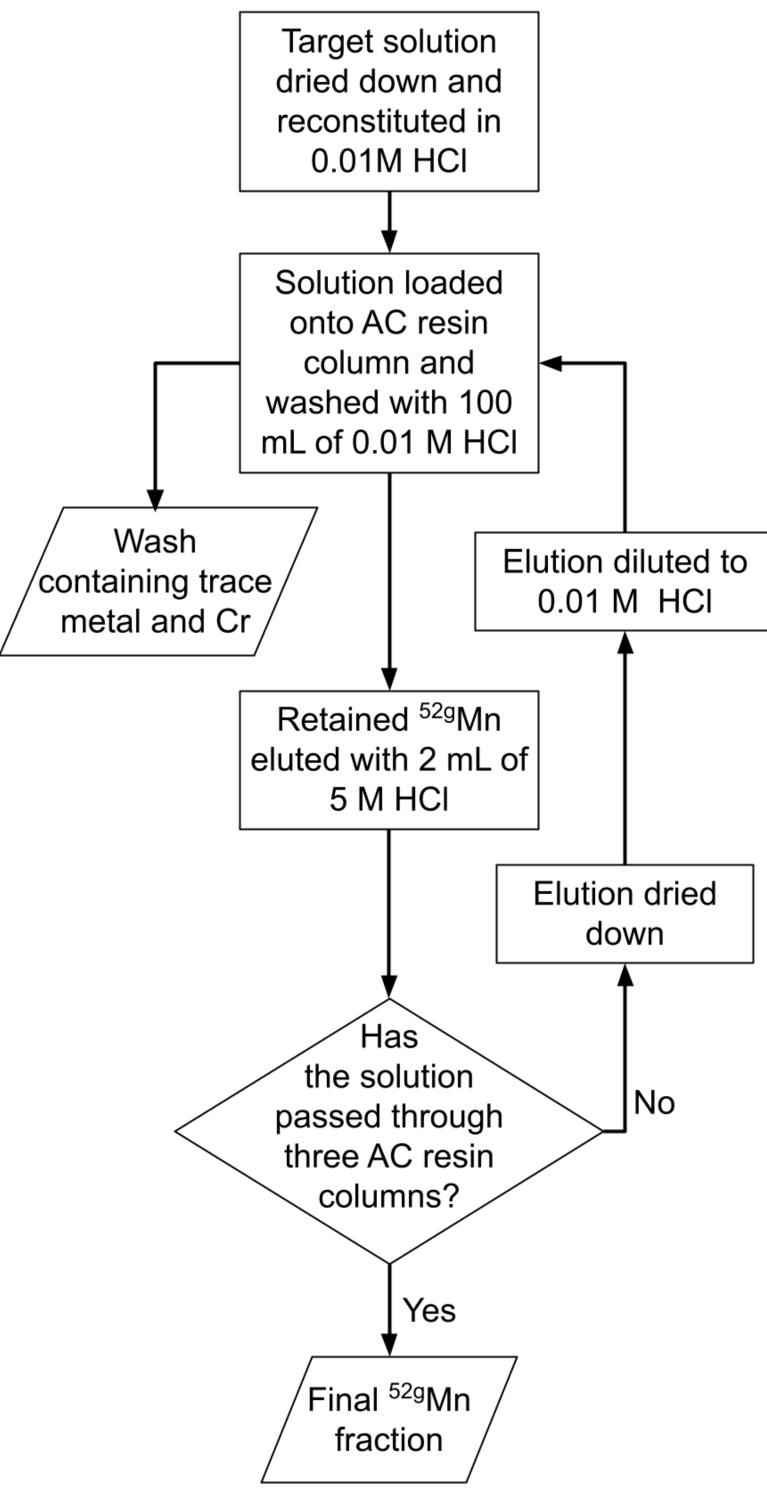


Figure 2. Flow diagram of ^{52g}Mn/^{nat}Cr separation protocol⁴.

Labeling

The purified ^{52g}Mn was labeled with DOTA of various concentrations, allowing data acquisition for apparent molar activity (AMA) calculations. The AMA values served to show whether separation was successful, as DOTA also chelates to the trace mental content⁴.

Results

Production

As seen in Fig. 3, experimental data showed general agreement with theoretical yield calculations performed. The uniformity of electroplated ^{nat}Cr targets allowed relatively accurate predictions.

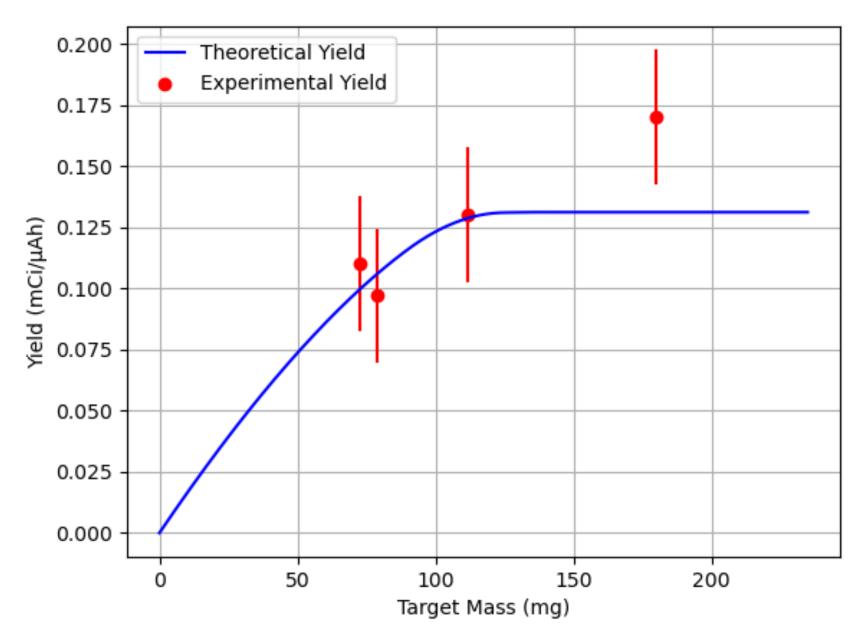


Figure 3. Theoretical and experimental thick target yield of ^{52g}Mn. Experimental yield corrected for beam spread.

Separation

The purity of the final product was verified by microwave plasma - atomic emission spectroscopy (MP-AES). Table 1 shows that the concentrations of transition metals and chromium contamination were low enough for current needs in biological studies.

Effective DOTA labeling, as shown in the following section, was also an indication of proper removal of impurities.

Table 1. Concentration of trace metals and Cr post-separation (n=1).

Element	Concentration
Zn	2 ppm
Fe	< 50 ppb
Cu	0.4 ppm
Ni	0.1 ppm
Co	1.5 ppm
Cr	0.75 ppm

Labeling

Thin layer tomography (TLC) was used to assess the labeling results. Fig. 4 features the increasing level of chelation with rising concentrations of DOTA at pH 5.5. The AMA of labeling of ^{52g}Mn with DOTA typically fell above 2 mCi/µmol when using activity of approximately 16 µCi/vial.

Conclusion and Outlook

Current protocols in ^{52g}Mn production and purification from ^{nat}Cr targets had been proven to be effective in producing the isotope of interest in both high yield and purity.

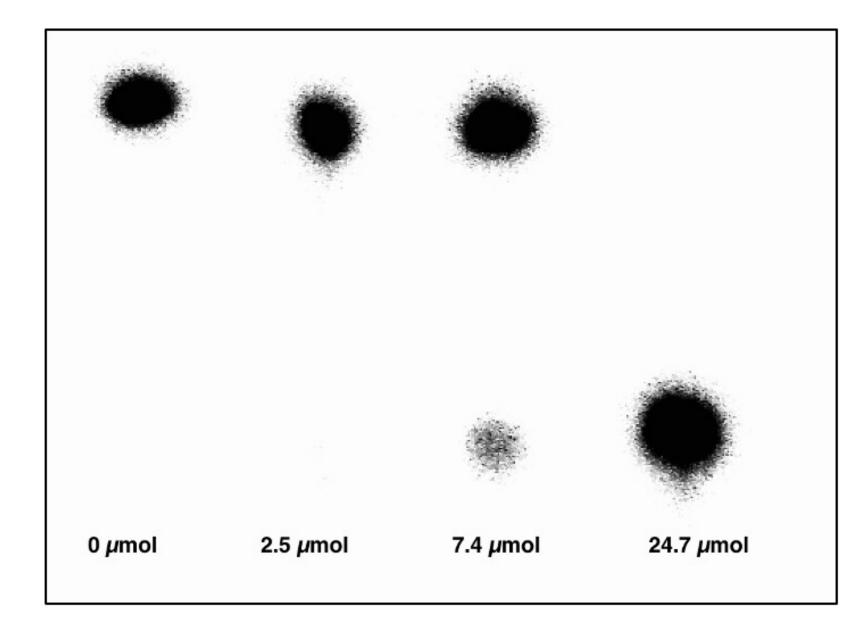


Figure 4. TLC plate.

However, the current production route simultaneously produces chemically inseparable 54 Mn ($t_{1/2} = 312.20$ d, $E_{\gamma} = 834.848$ keV) contamination². The long half-life and high intensity decay gamma-ray makes 54 Mn an undesirable by-product that obstructs further clinical research.

Ongoing studies propose target fabrication via electroplating powdered enriched ⁵²Cr, yet recycling remains a problem in establishing a sustainable production pathway.

There remains room for improvement in manganese radionuclide labeling; chelators of stronger bonds or applications for different biological models are still being investigated.

Acknowledgements

- All members of the UW-Madison Cyclotron Gang
- Organizers of HIPPO activities
- This work was supported in part by Department of Energy Isotope Program's Grant DE-SC0022550, the Horizon-broadening Isotope Production Pipeline Opportunities (HIPPO) program.

References

- 1. Yang Dong, Huo Junde. Nuclear Data Sheets 128, 185 (2015)
- 2. Yang Dong, Huo Junde. Nuclear Data Sheets 121, 1 (2014)
- 3. J.T. Morrell. Curie: Python Toolkit for Experimental Nuclear Data, 2020. URL https://pypi.org/project/curie/0.0.15/
- 4. K.E. Barrett et al. "Characterization of actinide resin for separation of ^{51, 52g}Mn from bulk target material," Nuclear Medicine and Biology, 2021.