# Understanding Extractions of Used Nuclear Fuel: the Effects of Radiolysis and <sup>99</sup>Tc Speciation

# Introduction

- The build-up of tributyl phosphate (TBP) degradation compounds has been proven to reduce separation of U from fission products in used nuclear fuel (UNF), but specific causes of this are poorly understood.
- To address this gap in fundamental knowledge, TBP degradation species and the radiolysis-induced redox chemistry of Tc must be studied with respect to their impact on separations under UNF reprocessing conditions.
- This work requires optimized liquid-liquid extraction for Tc and other major fission products (Ce, Zr, U) in the HNO<sub>3</sub>/TBP/dodecane system, in the presence of TBP degradation compounds like dibutyl phosphoric acid.
- Characterization by IR, multinuclear NMR, and XAS will provide P and Tc speciation and coordination environment, from which extraction dependence on Tc redox chemistry or TBP degradation products may be inferred.



<u>Figure 1:</u> Simplified diagram of solvent preparation and extraction procedure

- Liquid-liquid extraction is a reliable technique for determining the partitioning of solutes in a biphasic system. All organic layers are 70% dodecane (v/v), and 30% a combination of tri- and/or dibutyl phosphate
- Optimal <sup>99</sup>Tc extraction from aqueous phase occurs at 0.6 M HNO<sub>3</sub>[1]
- Partitioning of a solute (e.g., <sup>99</sup>Tc) into the organic phase, followed by separation of the phases and radioactivity measurement on a detector, provides distribution ratios, D = $[solute]_{org}/[solute]_{aqu}$
- Resulting separations are subject to characterization techniques such as XAS and NMR (<sup>99</sup>Tc is quadrupolar and very sensitive to NMR, where distortion from cubic environments results in chemical shift and a broadened signal.

**CYCLOTRON INSTITUTE** 

TEXAS A&M UNIVERSITY





# Steven J. Schultz<sup>1,2</sup>, Rachel Greenberg<sup>3,4</sup>, Ramsey Salcedo<sup>3,4</sup>, Lynn Francesconi<sup>3</sup>, and Sherry J. Yennello<sup>1,2</sup>

<sup>1</sup>Cyclotron Institute, Texas A&M University, College Station, TX <sup>2</sup> Department of Chemistry, Texas A&M University, College Station, TX <sup>3</sup> Department of Chemistry, City University of New York–Hunter College, New York, NY <sup>4</sup> Department of Chemistry, City University of New York–Lehman College, New York, NY

## Results

<u>Table 1:</u> Sample distribution ratios of <sup>99</sup>Tc in biphasic systems of 0.6M HNO<sub>3</sub> and TBP/HDBP/dodecane as determined by liquid scintillation<sup>(a)</sup>

| TBP / HDBP /<br>Dodecane | Tc Only       | Tc + 40mM U   | Tc + I0mM Zr  | Tc + 20mM Zr  |
|--------------------------|---------------|---------------|---------------|---------------|
| 30/0/70                  | 0.420 (0.085) | I.525 (0.452) | 0.381 (0.465) | 0.611 (0.117) |
| 21/9/70                  | 0.325 (0.051) | 0.429 (0.144) | 0.414 (0.070) |               |
| 15/15/70                 | 0.225 (0.070) | 0.689 (0.771) | 0.173 (.117)  | 0.103 (0.141) |

(a) The liquid scintillation counter required a 1000x dilution of activity in the extracted layers, of which 100 μL was added to 4.5 mL of scintillation cocktail. High error samples will be rerun in low-quenching cocktail.

<u>Table 2:</u> Karl-Fischer Titrations of biphasic systems for water content determination of organic phase pre- and post-extraction

|                  | Organic [H <sub>2</sub> O], ppm |            |            |  |
|------------------|---------------------------------|------------|------------|--|
| TBP/DBP/Dodecane | 30/0/70                         | 21/9/70    | 15/15/70   |  |
| Pre-Extraction   | 10.5 (0.1)                      | 15.1 (0.3) | 15.6 (0.3) |  |
| 20mMTc only      | 16.4 (0.3)                      | 12.0 (0.1) | 16.3 (0.1) |  |
| 20mMTc + 40mM U  | 6.4 (1.1)                       | 8.5 (0.2)  | 7.8 (0.1)  |  |
| 20mMTc + 10mMZr  | 11.6 (0.3)                      | I4.7 (0.I) | 15.2 (0.1) |  |
| 20mMTc + 20mM Zr | 12.3 (0.1)                      | 16.2 (0.3) | 16.3 (0.1) |  |

- The slightly increased polarity of dibutyl phosphoric acid over tributyl phosphate results in more extraction of water into organic phase. Water and nitric acid extraction data will provide insight for metal extraction mechanisms.
- Multinuclear NMR (<sup>31</sup>P, <sup>99</sup>Tc) will be performed on separated phases, to corroborate XAFS data on Tc speciation in extraction systems.

<u>Table 3:</u> Extended X-ray absorption fine structure (EXAFS) fitting parameters for <sup>99</sup>Tc extracted into 30% TBP in dodecane.<sup>(b)</sup>

| Neighbor | # <u>of</u> Neighbors | Distance (Å) | σ²(Ų)    | p(F) ° | Model         |
|----------|-----------------------|--------------|----------|--------|---------------|
| 0        | 4                     | 1.72(1)      | 0.002(8) | 0.11   | 4 O at 1.74 Å |
| 0        | 2                     | 2.18(2)      | 0.002(3) | 0.0452 | 4 O at 1.74 Å |
| 0        | 2                     | 1.96(1)      | 0.001(9) | 0.0452 | 4 O at 1.74 Å |

(b)  $S_0^2=0.9$  (fixed);  $\Delta E=8.9eV$ ; fit range 3<k<13; 1<R<3; 14.3 data; 6 parameters; r=0.049. <sup>99</sup>Tc occurs here in its (VII) state as  $TcO_4^-$ 

(c) Probability that the fit improvement by adding the scattering shell is due to random error

HORIZON-BROADENING ISOTOPE PRODUCTION PIPELINE OPPORTUNITIES









<u>Figure 2:</u> Sample extended X-ray absorption fine structure<sup>(d)</sup> of <sup>99</sup>Tc extraction into 30% TBP in dodecane.<sup>(e)</sup>



(d) EXAFS data obtained at BNL on 6-BM beamline. k is photo-electron wavenumber,  $\chi(R)$  is oscillations as a function of distance from central atom. (e) Tc concentration determined to be 6 mM in organic phase by D-value. (f) Theoretical scattering curves calculated with Feff6 [1], F-test applied to fit for each shell contribution [2]

Extended X-ray absorption fine structure (EXAFS) can provide local structural information for the atom in question. The above fit is derived from the crystal structure of KTcO<sub>4</sub>, where Tc is the atom of interest.

# Summary & Discussion

- Liquid-liquid extractions (LLE) have provided <sup>99</sup>Tc distribution ratios in used nuclear fuel (UNF) simulant.
- <sup>99</sup>Tc is coextracted with U, and Zr
- These extractions are being characterized by Karl-Fischer and acidbase titrations, as well as IR, multinuclear NMR, and EXAFS to assess impact of Tc and TBP degradation products on U recovery from UNF
- Preliminary data show  $TcO_4^-$  as dominant Tc species before (by IR) and after (by EXAFS) irradiation (<sup>60</sup>Co gamma irradiation at BNL), and HDBP as dominating reduction in <sup>99</sup>Tc D-values.
- Deepening the understanding of Tc speciation in these conditions may also influence the recovery valuable early actinides from used nuclear fuel.

### References

[1] George, K., et al. "A review of technetium and zirconium extraction into tributyl phosphate in the PUREX process", **2022**, *Hydrometallurgy*, 211.105892

[2] Mustre de Leon, J., et al. "Ab initio Curved-Wave X-ray-Absorption Fine Structure.", **1991**, Phys. Rev. B 44: 4146-4156.

[3] Downward, L., et al., "A Variation of the F-test for Determining Statistical Relevance of Particular Parameters in EXAFS Fits.", 2007, AIP Conf. Proc. 882:129

# Acknowledgments

This research was made possible by funding from the Nuclear Energy University Program, project number 21-24374, and the U.S. DOE. Steven Schultz's contribution were sponsored by the Horizon-broadening Isotope Production Pipeline Opportunities program, under the auspices of the Isotope Program of the U.S. Department of Energy.

