

Development and Assessment of New Chelator Resins for Ti and Sc Isotope Separation

Mariae Julia Robis,² Angus J. Koller,¹ Lilian Wang,¹ Margarita Chernysheva,³ Jonathan Engle,³ and Eszter Boros¹

¹Stony Brook University, ²Macaulay Honors College – CUNY Lehman College, ³University of Wisconsin - Madison

1 - Introduction

- The 44 Ti/ 44 Sc generator has potential for clinical use for production of 44 Sc ($t_{1/2}$ = 3.97h, β += 94.27%, E β + avg= 632.0 keV, E β + max= 1474 keV)
- Use is hampered by poor separation of 44 Sc from the long-lived mother isotope 44 Ti ($t_{1/2}$ = 60 y), and common elution methods requiring toxic oxalic acid
- The isotope 45 Ti ($t_{1/2}$ = 3.08 h, β^+ = 85%, $E\beta^+_{avg}$ = 0.439 MeV, $E\beta^+_{max}$ = 1.04 MeV) is an ideal candidate for PET imaging, produced by proton bombardment of naturally monoisotopic Sc foil via the 45 Sc(p,n) 45 Ti reaction between 7-13.5 MeV. The 45 Ti is typically eluted in 0.1-1.0 M citric or oxalic acid
- A lack of efficient separation methods due to the complex speciation and chelation behavior of Ti(IV) has prevented use of ⁴⁵Ti in nuclear medicine to date.

At A Glance Sc NGOH NGOH

Can we develop new approaches to Sc/Ti separation?

Four chelating resins
were tested using
ICP-OES and radiochemistry

CA-Def resin demonstrated best Ti/Sc separation at 1 M HCI

0.1 M Citric Acid

| < \cdres \cdre

Can the CA-Def resin separate trace Ti⁴⁺ from bulk

Can additional impurities such as Fe³⁺ be removed

in the loading step, or with additional washing

3 – natTi/natSc Separation Analysis

<u>(</u>) 24h

 Sc^{3+} ?

1.0 M HCI

CA-Def resin shows affinity for macroscopic amounts of Ti4+ in 1 M HCI. Sc3+ and Fe3+ impurities can be removed at loading by washing with 0.1 M oxalic acid

2 - Chelator-Based Resins for Separation of Ti⁴⁺ and Sc³⁺

- The highly basic deferiprone (def) and catechol (cat) chelators have been previously shown by our group to
 effectively stabilize titanium in aqueous solution
- Can def and cat chelators be immobilized on solid phase and effectively separate Ti⁴⁺ and Sc³⁺ under mild acidic conditions?

Def and Cat functionalized resins can be effectively synthesized.

5 - Conclusions:

- Chelating resins were rationally designed based on solution speciation of Ti⁴⁺ and Sc³⁺
- CA-Def resin showed the highest potential for the separations of Ti⁴⁺ and Sc³⁺
- A model 44Ti/44Sc generator using CA-Def showed promise, but improved Ti4+ retention is necessary
- Purification of ⁴⁵Ti⁴⁺ from ^{nat}Sc³⁺ and Fe³⁺ shows promise in 1.0 M HCl, limiting the dilution necessary after target dissolution

4 – 44Ti/44Sc Separation Analysis

• Can chelator-based resins separate bulk Ti⁴⁺ from trace Sc³⁺ under mild conditions?

 \square Sc³⁻

Fe³⁺

- Is breakthrough of ⁴⁴Ti reduced?
- Do the separation properties of immobilized chelators closely resemble that of the solution speciation?

CA-Def shows effective Ti/Sc separation between 1.0-0.2 M HCl. Ti4+ affinity follows trends predicted by macroscopic solution chemistry experiments, but Sc3+ affinity is likely overestimated.

Acknowledgements:

- This work was supported in part by Department of Energy Isotope Program's Grant DE-SC0022550, the Horizon-broadening Isotope Production Pipeline Opportunities (HIPPO) program.
- The Gordon and Betty Moore Foundation (E. B.) are thanked for generous financial support of this work.

References:

Koller, A. et al. *Angew. Chem. Int. Ed.* **2022,** *in-press* Chaple, I. et al. *Appl. Radiat. Isot.* **2020**, *166*, 109398

Vavere, A. L. et al. *J. Nucl. Med.* **2005**, *46*, 683-690 Borgias, B. et al. *Inorg. Chem.***1984**, *23*, 1009–1016