LANTHANIDE TARGET FOILS FOR THE EXPLORATION OF TARGETED ALPHA THERAPY PRODUCTION MECHANISMS

Laura A. McCann1,2, Hector A. Hernandez3, Connor Mohs4, and Matt Gott4

1Department of Chemistry, Texas A&M University, College Station, TX 77843, USA, 2Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA, 3Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA, 4Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA

MOTIVATION

▪ Targeted alpha therapy (TAT) is rapidly coming to the frontiers of radiotherapeutic cancer research due to its high cell mortality rate when localized to the cancer site via a targeting agent. While radium-223, actinium-225, and astatine-211 are at the forefront of this research, all of these isotopes require separate isotopes for imaging (theragnostic pairs), since their alpha decays cannot be imaged outside of the body. A lesser known prospect for TAT is terbium-149, which decays via both positron and alpha emission, allowing it to be its own theragnostic pair, and eliminating the need for an imaging analog. However, it does not yet have a well-established production pathway via direct reaction. In order to probe potential reaction mechanisms for its production, a series of experiments will be executed which require the production of isotopically enriched samarium and gadolinium targets.

SAMARIIUM TARGETS

▪ Sm2O3 powder
▪ Low melting point lanthanide
▪ Vapor deposition
▪ 1 mg/cm²
▪ Ta pinhole boat
▪ 3Zr + 2Sm2O3 → 3ZrO2 + 4Sm
▪ Monitor heat of frame
 – < 60°C: metallic
 – > 60°C: oxidized

Aluminum Backed

GADOLINIUM TARGETS

▪ High melting point lanthanide
▪ Electroplating
▪ Convert Gd2O3 powder to GdCl3 with 0.2 M HCl
▪ Evaporated to dryness
▪ Dissolved in 0.01 M HCl
▪ Diluted to 20 mL in EtOH
▪ Voltage: 10, 60, & 200 V
▪ Current: 2 mA
▪ Time: 1 hr
▪ Salt targets produced

ACKNOWLEDGEMENTS

▪ This work is indebted to the operations staff at the Texas A&M Cyclotron Institute and Radiological Safety program for their contributions to this work. This work was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production under Award No. DE-SC0020958, DE-SC0022539 and DE-SC0022550 (the Horizon-broadening Isotope Production Pipeline Opportunities -HIPPO- program); U.S. Department of Energy under Award No. DE-NA0003841 and DE-FG02-93ER4077; the National Science Foundation Graduate Research Fellowships Program; Texas A&M University through the Bright Chair in Nuclear Science, the Nuclear Solutions Institute and a T3 grant: Texas A&M University System National Laboratories Office and Los Alamos National Laboratory through the joint collaborative research program. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-SC-0017208. This research used resources of Argonne’s ATLAS facility, which is a DOE Office of Science User Facility.

REACTION MECHANISMS

▪ 147Sm(6Li,4n)149Tb
 – 45 MeV
▪ 148Sm(6Li,5n)149Tb
 – 55 MeV
▪ 149Sm(6Li,6n)149Tb
 – 65 MeV
▪ 152Gd(p,4n)149Tb
 – 40 MeV

Self-Supporting

▪ NaCl coated microscope slides, via vapor deposition
▪ Vapor deposition of Sm
▪ Floated Sm off of slide in H2O