PET imaging agents are often employed in the field of nuclear oncology for the prediction of biodistribution and dosimetry of targeted radionuclide therapy agents (TRT). Radionuclides such as Lutetium-177, Actinium-225, and Bismuth-213 are promising radionuclides for TRT of cancer but don’t have a PET imaging surrogate.

Our lab has previously demonstrated the significant impact of the radionuclide selection in the biodistribution of small-molecule PET agents. The aim of this study is to determine whether in vivo behavior of tumor targeting alkylphosphocholine (APC) agents radiolabeled with various positron emitting radionuclides can be explained by physicochemical properties like hydrophilicity.

To this end, we will study NM600 (DOTA) with 64Cu and 86Y, NM620 (DFO) with 92Zr, and NM630 (NOTA) with 86Y. Log P/D and HPLC will be carried out with each radiolabeled compound to assess the differences in polarity and radio stability respectively. The potential to be gathered from this study is the prediction of in vivo behavior of PET imaging analogs radiolabeled with various radionuclides.

Cu-64 NOTA and DOTA Labeling

Turn on the shaker (37°C) and heater (70°C) and add 300 μL of 1M NaOAc buffer (pH of 5.5) to a 1.5mL microcentrifuge tube and add 1mL of PBS Buffer.

The pH measured should be around 5.5. Adding to the compound should be a NM-600 concentration of 5ug/μL that will then be 10ug of NM600 per mCi of activity.

This is then incubated at 95°C for 400rpm for 30 minutes. With a Luer lock syringe, obtain 2mL of ultrapure water to add to the tube and shake, then extract with a 22G long needle syringe.

Pass the content with a HLB filter which the waste would be discarded in a waste vial, and it must be passed with a rate of 1 drop per second. Obtain 2mL of ethanol with a glass syringe. Collect into a 3mL glass vial from HLB filter.

We then place the vial with two vent needles into the heater at 70°C and dry the ethanol under a low flux of nitrogen or argon gas. Add 3mL of dry resin to the dried vial.

Obtain 2mL of ethanol with a glass syringe. Collect into a 3mL glass vial and shake for 30 minutes at 37°C 500rpm. Fill a 3mL syringe with around 1.5mL water, put on the needle, and draw up the reaction.

With a rate of (1 drop/sec) run through a small column into waste and check the record activity in the column. Fill the glass syringe with 1.5 mL ethanol and 1mL air, which would elute into the glass vial(1 drop/sec). Evaporate with the heating block at 70°C and nitrogen which would be resuspended in PBS.

Zr-89 DFO Labeling

First, the buffer will be prepared to ensure that there is 1M of HEPES (238 mg/mL) and that there is trace metal water and trace metal ethanol.

Label Eppendorf tube for reaction and glass vial with septum cap for final resuspension.

Add 10ug DFO/1mCi activity, pipetting up and down. This will be then shaken for 30 minutes at 37°C 500rpm. Fill a 3mL syringe with around 1.5mL water, put on the needle, and draw up the reaction.

With a rate of (1 drop/sec) run through a small column into waste and check the record activity in the column. Fill the glass syringe with 1.5 mL ethanol and 1mL air, which would elute into the glass vial(1 drop/sec). Evaporate with the heating block at 70°C and nitrogen which would be resuspended in PBS.

Results and Conclusion

DOTA Cu-64: Based on the respective Log P analysis (From which we obtained to be: -0.3587), it can be determined that the DOTA chelator with the Cu-64 is hydrophilic. Moreover, The Log D Analysis (Which obtained: 0.1252) details that the respective compound resides within the aqueous phase.

NOTA Cu-64: Based on the respective Log P Analysis (0.488496806) we determine that the NOTA chelator with the Cu-64 is hydrophilic, and the obtained Log D (0.3728) determines that the compound resides within the aqueous phase.

Zr-89 radiolabeled for Zr-89 compound with the DOTA chelator, we had concluded based on the findings of the Log D (having a partition coefficient of: -0.08467) and the Log P (having a partition coefficient of: -0.1602) that the compound presents itself to be soluble in the aqueous phase and it is hydrophilic.

Literature references

Acknowledgments

This work was supported in part by Department of Energy Isotope Program’s Grant DE-SC0022550, the Horizon-broadening Isotope Production Pipeline Opportunities (HIPPO) program.