TAMUTRAP:Texas A&M University Penning trap facility

P.D. Shidling Cyclotron Institute, Texas A&M University

Outline * Motivation * TAMUTRAP facility * Mass Measurement *Future outlook **Motivation**

Make a precision measurement of the angular correlation parameter.

***** Compare the SM predictions to observation.

$$a_{\beta \mathcal{V}}^{expt.} \stackrel{?}{=} a_{\beta \mathcal{V}}^{theory}$$

Look for deviations as an indication of new physics

How do we plan to test the Standard Model (SM)? **Pure Fermi transition In Standard Model (SM)** B+ weak interaction is V-A β+ ν_e ν_{e} **Correlation parameter Non SM Interaction SM Interaction** $W(\theta) \cong \left(\begin{array}{c} 1 + a \\ \beta v \end{array} \right) \frac{p - p}{E - v} \cos \theta \\ e v + b \frac{e}{E} \\ e v \end{array} \right)$ daughter nucleus **p**_r **p**_β Test of SM $a_{\beta\nu}$

Beta delayed proton emitters

Beta delayed proton emitters

Adelberger E.G. et al. Phys. Rev. Lett. 1299 83 (1999)

Coupling of T-REX to TAMUTRAP facility

Commissioning of TAMUTRAP facility

M. Mehlmann (Ph.D. Thesis)

TAMUTRAP: Penning Trap

M. Mehlman et al. NIMA **712** (2013) 9

Other existing Cylindrical Penning Trap

Lifetime

Proton

Larmour

Prototype Penning Trap(Commissioned)

Ion motion in Penning trap

Three characteristic harmonic motions: axial motion (frequency f_z) magnetron motion (frequency f_z) modified cyclotron motion (frequency f_+)

Time-of-flight resonance technique

Time-of-flight resonance technique

Time-of-flight resonance technique

MCP Detector **Time-of-flight resonance technique** Dipolar radial excitation at $f_{...}$ of excitation frequency \Rightarrow increase of r_{\perp} ∂*B*/∂z Quadrupolar radial excitation near f_{c} \Rightarrow coupling of radial motions, conv. End Electrode **Ejection along the magnetic field lines** \Rightarrow radial energy converted to axial energy Correction Scan P Correction Time-of-flight (TOF) measurement End Electrode

TOF as a function of the excitation frequency

Determine atomic mass from frequency ratio: $(2\pi f_{c\,ref}) = \frac{q_{ref}B}{m_{ref}}; \ (2\pi f_c) = \frac{qB}{m}; \ m = (m_{ref}) \left(\frac{f_{c\,ref}}{f_c}\right)$

Reference mass: ³⁹K

Measured mass: ²³Na

Measured mass: ²³Na

Transport Efficiency

➢RFQ efficiency ≈ 70% -75 % (Continuous Mode)

TAMUTRAP: Transport Efficiency

Injection optics Efficiency : 80% -85 %

Texas A&M University Penning Trap Facility (TAMUTRAP)

Texas A&M University Penning Trap Facility (TAMUTRAP)

TAMUTRAP Penning trap system (180 mm diameter)

Install Penning Trap system (180 mm) by September 2018.

***** Complete GEANT4 simulation and finalize the detectors.

Couple TAMUTRAP facility to HIG/LIG.

Begin RIB Program.

Thank you

Calculating ³² Ar requirements		DOWN
Element	Efficiency (%)	Rate After Element (p/s)
Measurement trap	100	250
Beamline	95	250
Purification Trap	100	263
Beamline	95	263
RFQ (bunched mode)	50	277
Beamline	95	554
Magnet (coarse selection)	100	583
Multi-RFQ	80	583
Gas catcher	15	729
Big Sol	35	4,860
Production	100	13,886

Isotope	Energy	Intensity	Isotope	Energy	Intensity
	<u>MeV/u</u>	<u>рµА</u>		<u>MeV/u</u>	<u>рµА</u>
p	55	27 (14)	²⁰ Ne	28	3.0 (1.5)
d	35	21 (10.5)	²² Ne	29	0.5 (0.25)
³ He	45	<i>]</i>] (5.5)	^{34}S	20	0.7 (0.35)
⁴ He	35	10 (5.0)	^{40}Ar	17	1.4 (0.7)
⁶ Li	35	7 (3.5)	⁴⁰ Ca	17	1.5 (0.75)
⁷ Li	25	8 (4.0)	⁵⁹ Co	11	0.9 (0.45)
^{10}B	35	4 (2.0)	^{78}Kr	10	0.6 (0.3)
¹¹ B	29	4.7 (2.35)	⁸⁶ Kr	8.3	0.6 (0.3)
^{16}O	35	2.3 (1.15)	¹²⁹ Xe	5.6	0.5 (0.25)

Table 1. – Expected 88" beam intensities and energies assuming ECR2 type source, K=140 and 25% transmission.

RIB	Beam	Beam Energy (E/A)(MeV)	Target Thickness (mg/cm²)	Beam Current (pnA)	Production Rate (p/s) (Target chamber)
³² Ar	³² S	20 – <mark>24</mark> MeV/u	22.5 mg/cm ² (42 mg/cm ²)	350 (700)	4.55×10 ⁴ (1.7×10 ⁵)
²⁸ S	²⁸ Si	22 - <mark>30</mark> MeV/u	22.5 mg/cm ² (60 mg/cm ²)	600 (1200)	7.45×10 ⁴ (3.97×10 ⁵)
²⁴ Si	²⁴ Mg	22- <mark>30</mark> MeV/u	22.5mg/cm ² (70 mg/cm ²)	600 (1200)	2.6×10⁵ (1.6×10 ⁶)
²⁰ Mg	²⁰ Ne	23 - <mark>30</mark> MeV/u	22.5mg/cm ² (66 mg/cm ²)	1500 (3000)	6.8×10 ⁵ (4.0×10 ⁶)
³⁶ Ca	³⁶ Ar	23- <mark>30</mark> MeV/u	22.5mg/cm ² (28 mg/cm ²)	700 (1400)	1.25×10 ⁵ (3.1×10 ⁵)
⁴⁰ Ti	⁴⁰ Ca	23- <mark>30</mark> MeV/u	22.5mg/cm ² (26 mg/cm ²)	750 (1500)	3.6×10 ⁴ (8.4×10 ⁴)

β -v correlation measurements

How do we plan to test the Standard Model (SM) ?

