

Direct low-energy measurement of the $^{25}Mg(\alpha, n)^{28}Si$ reaction via neutron

spectroscopy

Shahina

Postdoctoral research associate, Cyclotron Institute, Texas A&M University DNP 2024

How the heavy elements beyond Iron are produced?

How the heavy elements beyond Iron are produced?

Where do the neutrons come from?

Weak s-process $^{60}Fe < A < ^{90}Sr$

Neutron source: $22Ne(\alpha,n)^{25}Mg$

Carbon Oxygen

Helium Burning

Shell

Strength measurement of the $E_{\alpha}^{\text{lab}} = 830 \text{ keV}$ resonance in the ²²Ne(α , *n*) ²⁵Mg reaction using a stilbene detector

E. Robles¹, T. J. Ruland², T. T. King², A. Sanchez¹, R. S. Sidhu³, E. Stech³, and M. Wiescher³ ¹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA ²Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA ³Air Force Institute of Technology, Wright-Patterson Air Force Base, 45433 Ohio, USA

The interplay between the ²²Ne(α , γ) ²⁶Mg reaction and the competing ²²Ne(α , n) ²⁵Mg reaction determines the efficiency of the latter as a neutron source at the temperatures of stellar helium burning. In both cases, the rates are dominated by the α -cluster resonance at 830 keV. This resonance plays a particularly important role in determining the strength of the neutron flux for both the weak and main s process as well as the n process. Recent experimental studies based on transfer reactions suggest that the neutron and γ -ray strengths for this resonance are approximately equal. In this study, the ${}^{22}Ne(\alpha, n) {}^{25}Mg$ resonance strength has been remeasured and found to be similar to the previous direct studies. This reinforces an 830 keV resonance strength that is approximately a factor of 3 larger for the ²²Ne(α , n) ²⁵Mg reaction than for the ²²Ne(α , γ) ²⁶Mg reaction.

DOI: 10.1103/PhysRevC.110.015801

Strength measurement of the $E_{\alpha}^{\text{lab}} = 830$ keV resonance in the ²²Ne(α , n) ²⁵Mg reaction using a stilbene detector

Shahina^(D), R. J. deBoer^(D), J. Görres, R. Fang^(D), M. Febbraro,^{2,3} R. Kelmar, M. Matney, K. Manukyan^(D), J. T. Nattress,² E. Robles¹, T. J. Ruland², T. T. King², A. Sanchez¹, R. S. Sidhu³, E. Stech³, and M. Wiescher³ ¹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA ²Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA ³Air Force Institute of Technology, Wright-Patterson Air Force Base, 45433 Ohio, USA

The interplay between the ²²Ne(α , γ) ²⁶Mg reaction and the competing ²²Ne(α , n) ²⁵Mg reaction determines the efficiency of the latter as a neutron source at the temperatures of stellar helium burning. In both cases, the rates are dominated by the α -cluster resonance at 830 keV. This resonance plays a particularly important role in determining the strength of the neutron flux for both the weak and main s process as well as the n process. Recent experimental studies based on transfer reactions suggest that the neutron and γ -ray strengths for this resonance are approximately equal. In this study, the ${}^{22}Ne(\alpha, n) {}^{25}Mg$ resonance strength has been remeasured and found to be similar to the previous direct studies. This reinforces an 830 keV resonance strength that is approximately a factor of 3 larger for the ²²Ne(α , n) ²⁵Mg reaction than for the ²²Ne(α , γ) ²⁶Mg reaction.

DOI: 10.1103/PhysRevC.110.015801

Editors' Suggestion

for the s-process

Strength me

E. Robles¹, T. J. Ruland², T. T. King², A. Sanchez¹, R. S. Sidhu³, E. Stech³, and M. Wiescher³ ¹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA ²Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA ³Air Force Institute of Technology, Wright-Patterson Air Force Base, 45433 Ohio, USA ⁴School of Physics and Astronomy, The University of Edinburgh, EH9 3FD Edinburgh, United Kingdom

The interplay between the ²²Ne(α , γ) ²⁶Mg reaction and the competing ²²Ne(α , n) ²⁵Mg reaction determines the efficiency of the latter as a neutron source at the temperatures of stellar helium burning. In both cases, the rates are dominated by the α -cluster resonance at 830 keV. This resonance plays a particularly important role in determining the strength of the neutron flux for both the weak and main s process as well as the n process. Recent experimental studies based on transfer reactions suggest that the neutron and γ -ray strengths for this resonance are approximately equal. In this study, the ${}^{22}Ne(\alpha, n) {}^{25}Mg$ resonance strength has been remeasured and found to be similar to the previous direct studies. This reinforces an 830 keV resonance strength that is approximately a factor of 3 larger for the ²²Ne(α , n) ²⁵Mg reaction than for the ²²Ne(α , γ) ²⁶Mg reaction.

DOI: 10.1103/PhysRevC.110.015801

Previous Measurements of $^{25}Mg(\alpha, n)^{28}Si$

Previous Measurements of $^{25}Mg(\alpha, n)^{28}Si$

Previous Measurements of $^{25}Mg(\alpha, n)^{28}Si$

Experimental Details

High Energy measurement: Secondary- γ -ray detection

- 13 LaBr₃ detectors from the HAGRiD array provided by Kate Jones at UTK.
- For $2.35 < E_{\alpha} < 3.5 \gamma$ -ray angular distribution was measured at 7 angles in far geometry every 20 keV.
- Angles symmetric about the beam direction

Secondary y-ray Spectrum

Secondary y-ray Spectrum

Angular distribution of γ -rays

Cross-section from the high-energy measurement

Neutron detection with ORNL Deuterated Spectroscopic Array - ODeSA

- Deuterated liquid scintillator detectors at 55°, 90° and two at 125° in close geometry to maximize efficiency.
- This low energy cross-section measurement covered $1.5 < E_{\alpha} < 3.5$ MeV

Pulse Shape Discrimination

Neutron Spectrum Unfolding using: MLEM (Maximum-Likelihood Expectation Maximization)

120

100

Mathematically,

$$y_i = \sum_{j=1}^J r_{ij} x_j$$

 y_i : No. of counts in the i^{th} bin of PHS x_i : Incident neutron flux

 r_{ij} : element of the response matrix of the detector

Unfolded Neutron Spectrum

Cross-section from the low-energy measurement

Cross-section from the low-energy measurement

Preliminary reaction-rate

Summary

- performed over the energy range $1.5 < E_{\alpha} < 3.5$ MeV.
- Good agreement has been found with the previous data of Anderson et al. in the overlapping energy range.
- The cross-section agrees well with the Hauser-Feshbach calculations.
- Have identified different background contributions which hindered previous counter meaurements.
- The cross-section from the neutron measurement interpolated to get the preliminary reaction-rate.

• New low energy-measurement of the ${}^{25}Mg(\alpha, n){}^{28}Si$ cross-section have been

Thanks!

Kate Jones (UTK) Kevin Macon (ND) James deBoer (ND) Axel Boeltzig (ND) Michael Wiescher (ND) Mike Febbraro (ORNL) **Rebecca Toomey (ORNL)** Joachim Goerres (ND) Edward Stech (ND)

This work was supported by the National Science Foundation through Grant No. Phys-0758100, and the Joint Institute for Nuclear Astrophysics through Grant No. Phys-0822648 and PHY-1430152 (JINA Center for the Evolution of the Elements)

