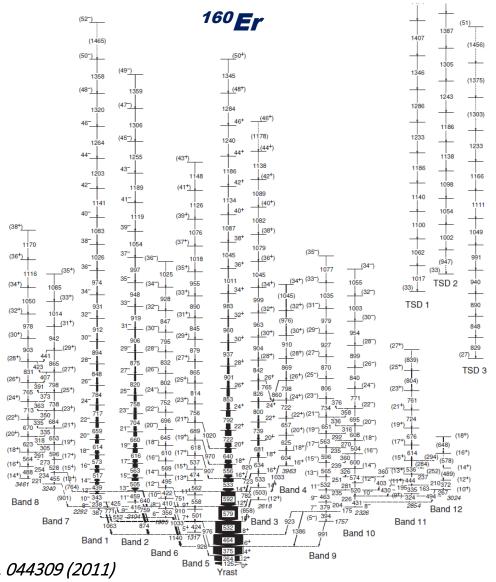
NSDD Texas A&M University Evaluation Center

Data-Based Research Project: How to build a Level Scheme?

N. Nica

Data-based Physics Research Level Scheme Re-Concept

- □ Question: What a Level Scheme is?
- An energy scale used to conventionally represent the decay paths of a nucleus from highest excited states to the ground state
- Levels: horizontal lines showing excitation energy, spin and parity
- Transitions: vertical arrows between levels indicating energy and intensity
- Bidimensional figure with true correlations only on vertical axis, while the horizontal direction is conventional
- Level (decay) Schemes: of explicit technical interest only for Nuclear Data Evaluation Community.
- > Shall we review the LS concept?
- Can LS still be of fundamental interest, e.g. by correlating bands on both directions?



Case study: 171 Yb nucleus high spin rotational bands

Band 1

Band 2 (45/2")_____ $(45/2^4)$ Band 7 Band 8 (43/2") Band 6 $(43/2^{+})$ Band 5 $(39/2^+)$ $(39/2^{-})$ (41/2+) (37/2-) (35/2)39/2⁺ 37/2 $(35/2^{+})$ 35/2 37/2+ _(33/2+) 33/2-33/2 35/2+ 31/2* 31/2-33/2+ 27/2(+) 31/2+ $(23/2^{+})$ 25/2+ 23/2(+) 29/2+ (21/<u>2+)</u> 21/2+ 23/2+ 21/2+

Band 3

FIG. 5. Level scheme for ¹⁷¹Yb.

D.E.Archer et al, Phys.Rev. C57, 2924 (1998)

Band 4

How the bands are described?

Bohr-Mottelson Collective Rotor

$$E(I) = \frac{\hbar^2}{2\Im}I(I+1), \quad c = \frac{\hbar^2}{2\Im}$$

$$E_{\gamma} = E(I) - E(I - 2) = \frac{\hbar^2}{2\Im} (4I - 2) = 2c(2I - 1)$$

$$\Delta E_{\gamma} = E_{\gamma}(I) - E_{\gamma}(I - 2) = 8\frac{\hbar^2}{2\Im} = 8c$$

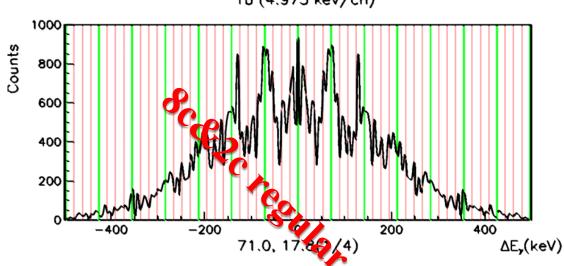
New Parametrization (average behavior)

$$E_{\gamma} = 2c(2I + k - 1)$$
, k integer

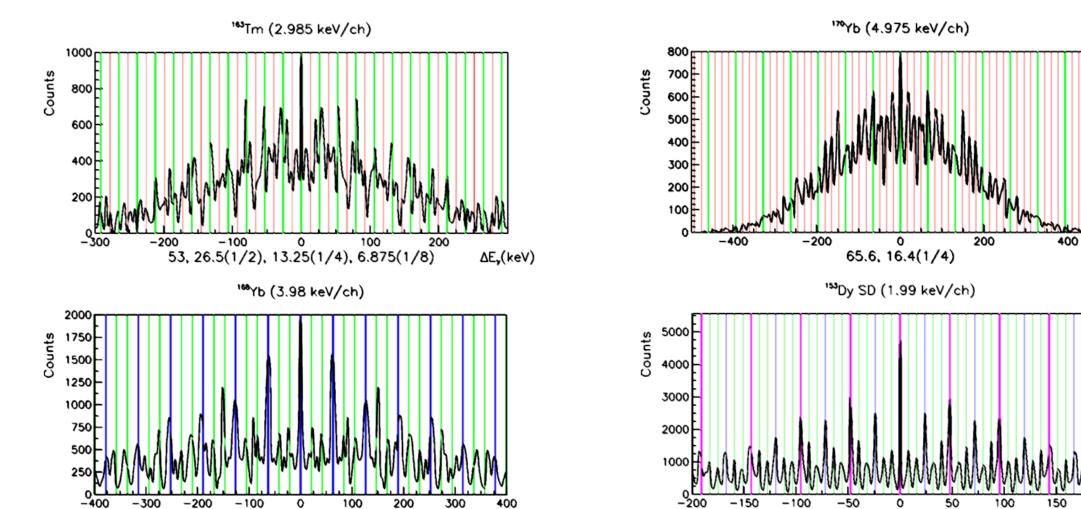
- 2c Moment of Inertia, Real
- (2I+k-1) Angular Momentum, Integer

$(\Delta E_{\gamma}^{x}, \Delta E_{\gamma}^{y})$ Differential Coincidence Matrix Bitmap

171Yb (4.975 keV/ch)



$(\Delta E_{\gamma}^{x}, \Delta E_{\gamma}^{y})$ Differential Coincidence Matrix Bitmap (projection)



200

300

 $\Delta E_{\star}(keV)$

-200

63.0, 21.0(1/3), 3.5(1/18)

 $\Delta E_{\star}(keV)$

 $\Delta E_{\star}(keV)$

47.7, 23.85(1/2), 7.95(1/6)

How the bands can be described?

Bohr-Mottelson Collective Rotor

$$E(I) = \frac{\hbar^2}{2\Im}I(I+1), \quad c = \frac{\hbar^2}{2\Im}$$

$$E_{\gamma} = E(I) - E(I - 2) = \frac{\hbar^2}{2\Im} (4I - 2) = 2c(2I - 1)$$

$$\Delta E_{\gamma} = E_{\gamma}(I) - E_{\gamma}(I - 2) = 8\frac{\hbar^2}{2\Im} = 8c$$

New Parametrization (average behavior)

$$E_{\gamma} = 2c(2I + k - 1)$$
, k integer

- 2c Moment of Inertia, Real
- (2I+k-1) Angular Momentum, Integer

¹⁷¹Yb Rotational Bands

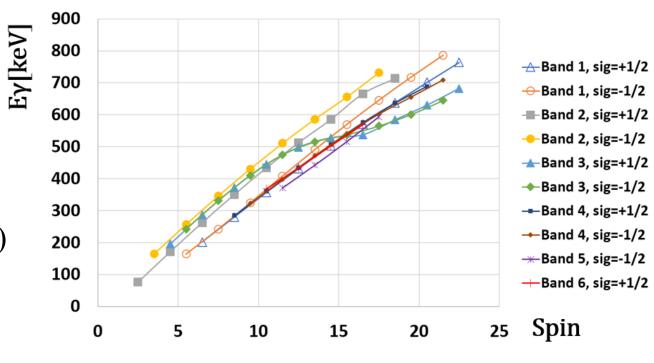
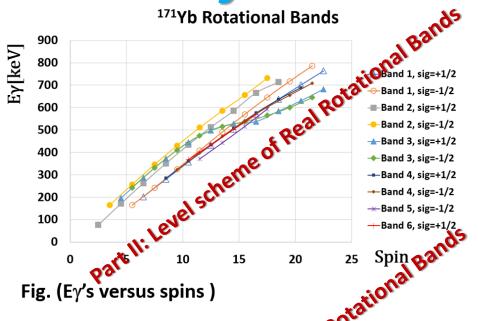


Fig. (E γ 's versus spins)

- -Quasi-linear beam almost parallel and equidistant
- -Average behavior: 2c(2I+k-1), 2c Real,(2I+k-1) Integer
- -Determine from fit: 2c, k's $\Sigma(E\gamma(I)/2c-(2I+k-1))^2 = \min$
- -All k-bands have the same ΔE_{γ} =8c and thus same $\mathcal{J}_{eff}^{(2)}$

Case study: 171 Yb nucleus high spin rotational bands



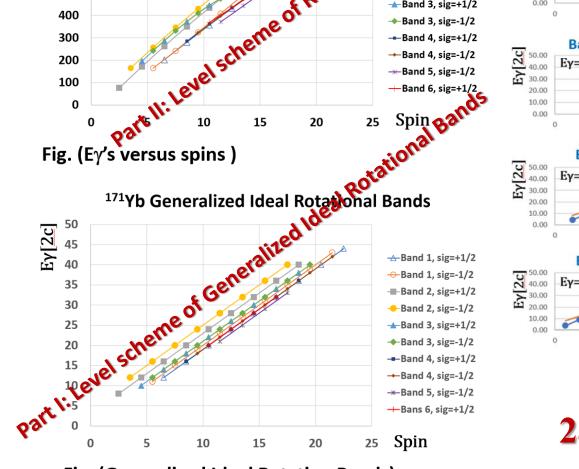


Fig. (Generalized Ideal Rotation Bands)

¹⁷¹Yb band fits using E_v=2c(2I+k-1) parametrization, $\Sigma(E_{\gamma}(I)/2c-(2I+k-1))^2$ =min

Band 5, sig =-1/2, π =+

Band 6, sig =+1/2, π =+

 $I[\hbar]$

 $I[\hbar]$

 $E_{\gamma}=2I-2, k=-1$

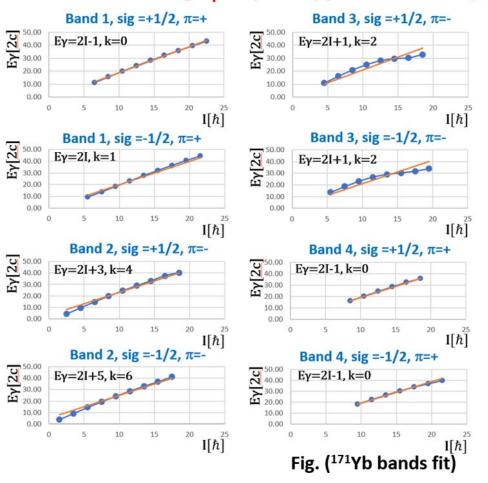
 $E_{\gamma}=2I-1, k=0$

00.00 EX SC 00.00 00.00 PX 00.

00.00 EX SC 00.00 00.00 00.00 00.00 00.00

20.00

10.00



$$2c = 17.75 \text{ keV}$$

 $\mathcal{J}_{eff}^{(2)} = 56.34 \text{ }h^2/\text{MeV}$

What we got for the average description of ¹⁷¹Yb bands?

k-Generalized Ideal Rotor bands:

For **k=0**, **Bohr-Mottelson Ideal Rotor** bands: described by the 2cl(I+1) rule for even and odd spins

For $k\neq 0$, k-Generalized Ideal Rotor bands: have the same $\mathcal{J}_{eff}^{(2)}$ (same 8c!) but are no longer described by the 2cl(I+1) rule.

How to place the k-generalized ideal rotor bands in the level scheme?

By adding "stairs" of 2c levels to the k=0 band!

One gets a "parabolic 2D building"

- with the "0" floors of the k=0 Bohr-Mottelson I(I+1) levels vertically connected as by an elevator cabin,
- as well as by "fire escape" stairways for all k ≠0, of 2I+1 stairs for each floor, one for even spins and one for odd spins.
- In general, the energy levels can be indexed by three integer numbers, (I,m,n), where I is the nuclear spin, m is the position of the "stair" level relative to the spin "floor", and n the energy of the level, which is a natural number in units of 2c.
- k≠0 bands are represented as tilted paths on the Parabolic Level Scheme

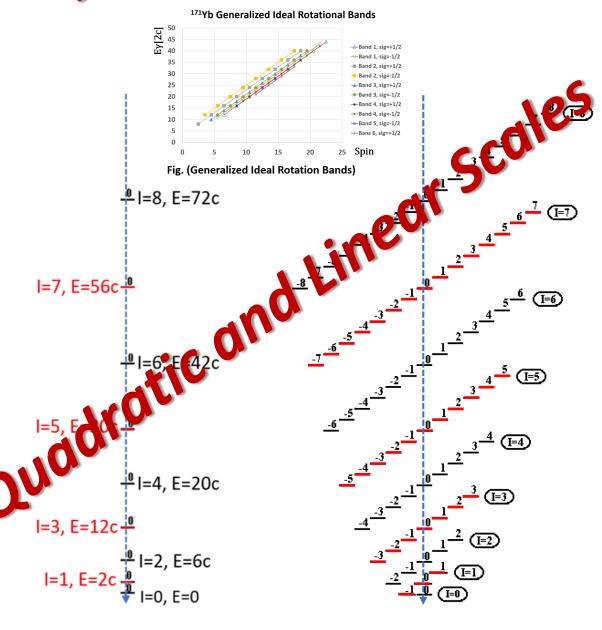
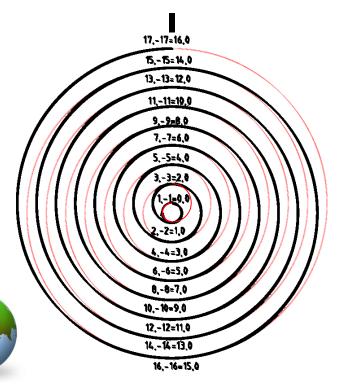


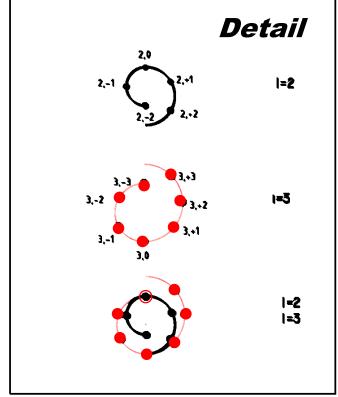
Fig. (Ideal rotor)

Fig. (Opened generalized ideal rotor)

$$E_{\gamma}^{k}(I) = 2c (2I + k - 1), k = \pm 1, \pm 2, ..., I$$

DOUBLE HELIX



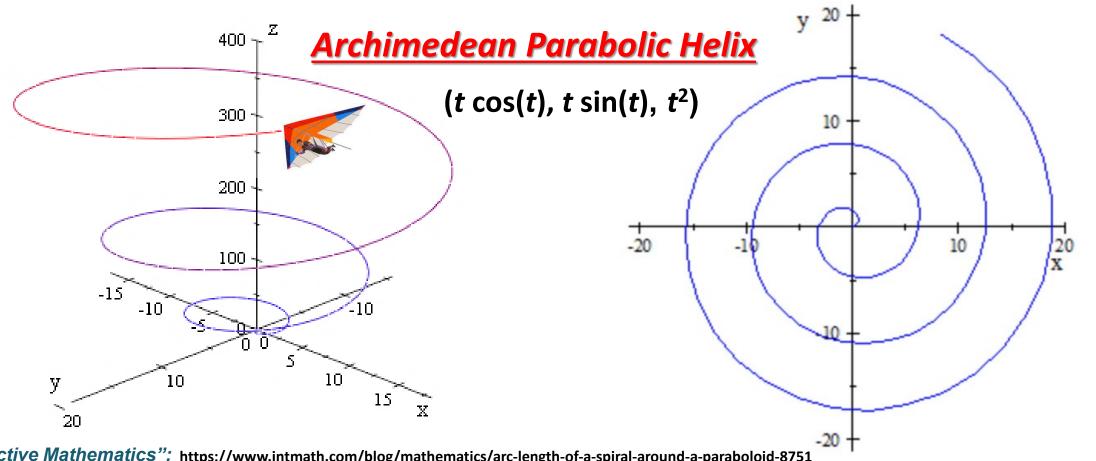


"Mercator-like" 2D view

"Globe-like" 3D view (from above)

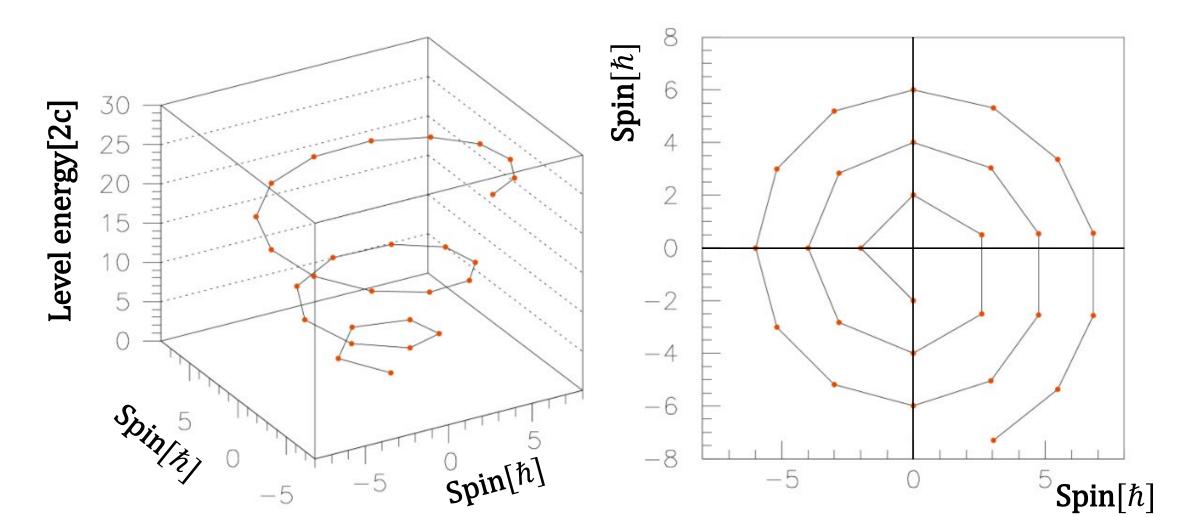
Correspondence Principle: Classical to Quantum Mechanics

a) Classical: Attenuated Rotational Motion (progressive decrease of energy and ang. momentum)



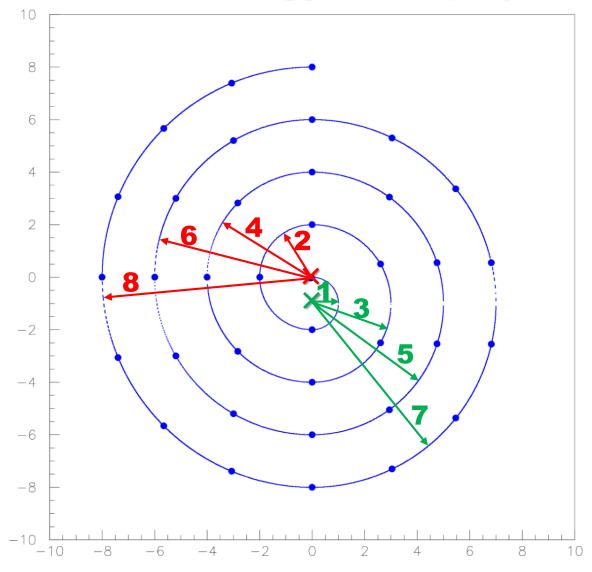
Correspondence Principle: Classical to Quantum Mechanics

b) Quantum: Attenuated Rotational Motion (progressive decrease of excitation energy and spin)

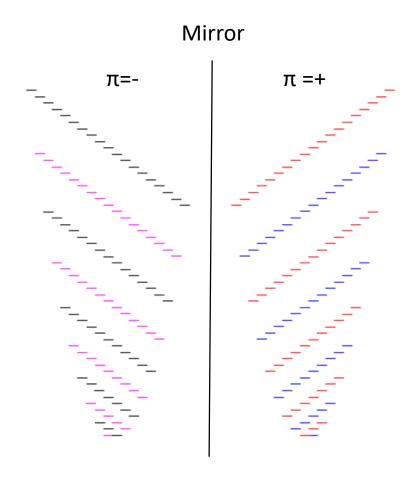


Quantum Helix: Attenuated Rotational Motion (progressive decrease of excitation energy and spin)

- The fact that quantum angular momentum is expressed by integer values implies that the radii of the quantum helix are also integers
- This implies that the quantum helix is composed of a series of alternating odd-even radii semicircles
- This also implies that unlike the classical helix, the quantum helix has two centers:
- 1. (0,0) center for even integer radii for even-l semicircles on the left
- 2. (0,-1) center for odd integer radii for odd-l semicircles on the right

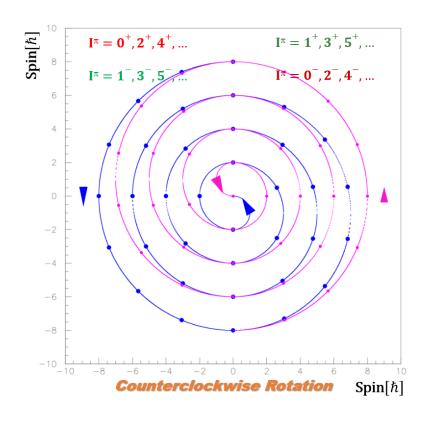


Helicoid Degrees of Freedom



- One has **3 degrees of freedom** for helicoids:
 - **2 helicoids for spins**: sig=0,1 for integer spins; (and separately for sig=+1/2,-1/2 for half-integer spins)
 - 2 helicoids for direction of rotation: clockwise and counterclockwise
 - **2 helicoids for parity**: positive and negative
- Therefore there are 2³=8 helicoids per even-A and odd-A nuclei, respectively.
- However, two combinations of spin-parity can be hosted by a same helicoid for both even-A and odd-A nuclei, which reduces to 2 helicoids their number for all spin-parity combinations per direction of rotation (4 helicoids for both directions)
- We cannot distinguish between the directions of rotation at this stage, so we'll conventionally use only the set of 2 counterclockwise helicoids for all representations
- Important to stress: quantum double-helix can naturally support the direction of rotation degree of freedom "helicity" quantum observable

Double-Helix for even-A Nuclei



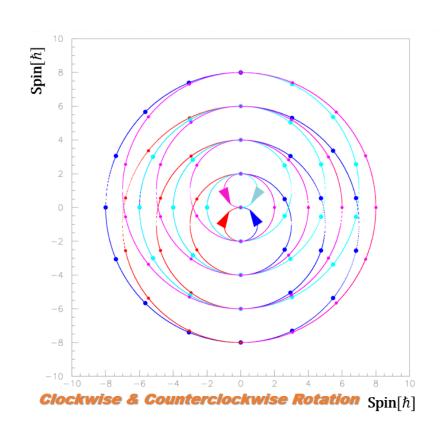
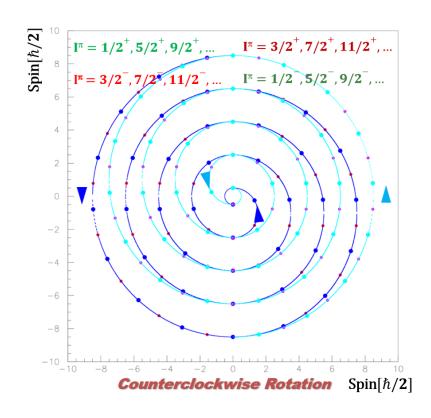


Fig. (Set of 2 helixes for integer spins)

Fig. (Complete set of 4 helixes for integer spins)

Double-Helix for odd-A Nuclei



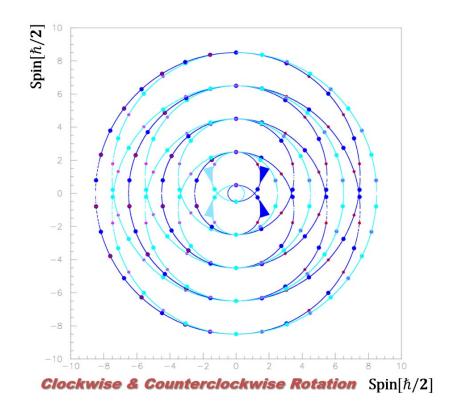


Fig. (Set of 2 helixes for integer half-spins)

Fig. (Complete set of 4 helixes for half-integer spins)

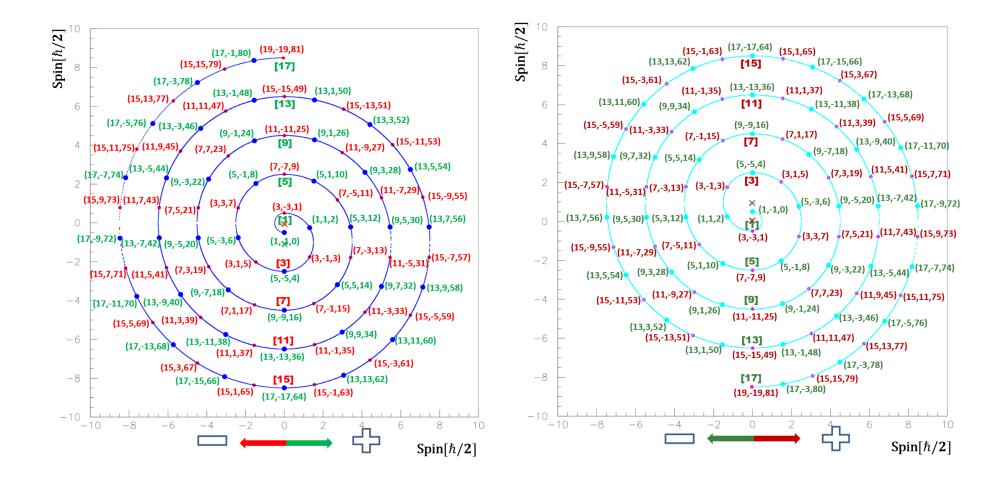


Fig. (Complete description of double helix for odd A)

k=0 ideal rotor signature partners bands on the double helix for even-A nuclei

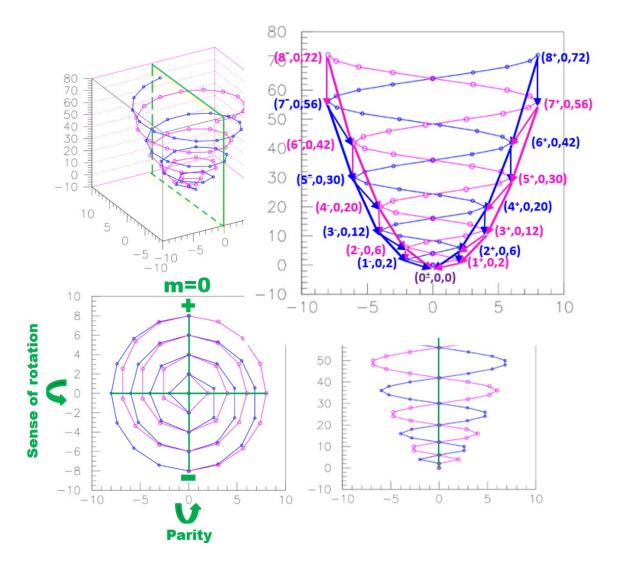
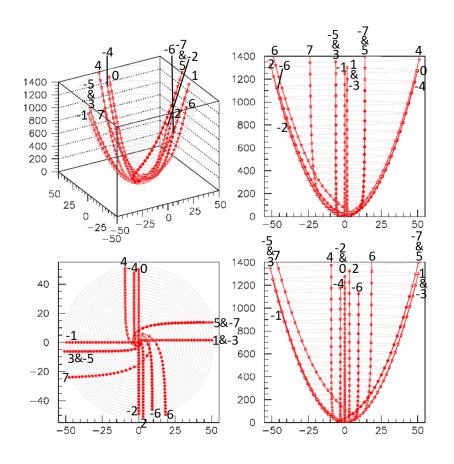


Fig. (Ideal signature partner bands on the double helicoid)

Positions of 21+k-1 generalized rotor bands on the helicoid for even-A and odd-A nuclei



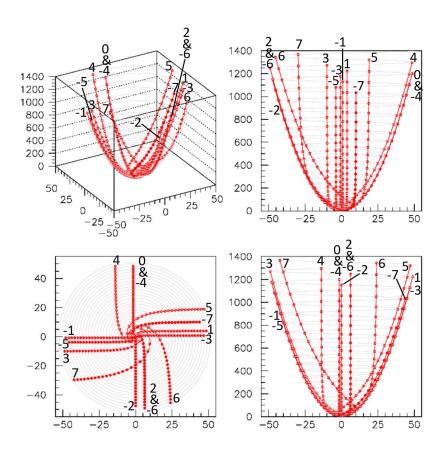
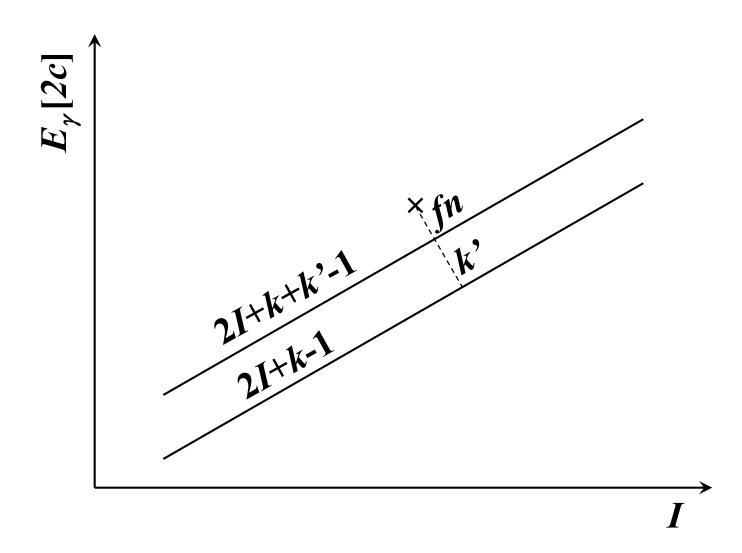


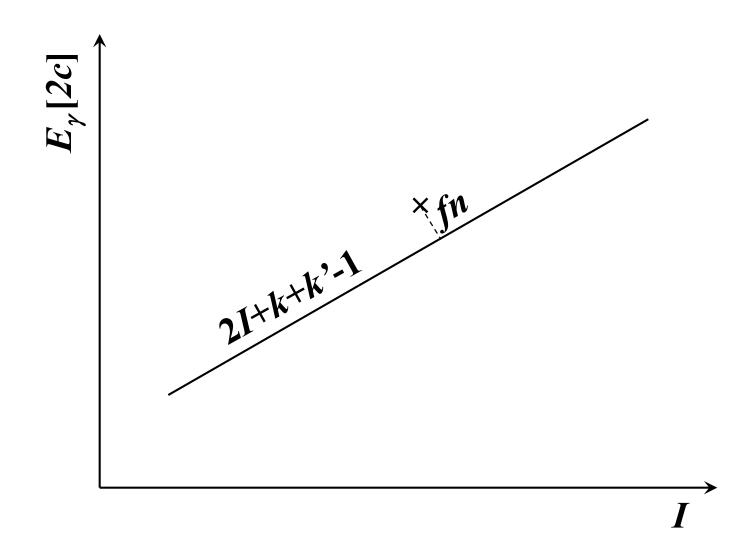
Fig. (Generalized (2I+k-1) bands on helix for even A)

Fig. (Generalized (2I+k-1) bands on helix for odd A)

Double-Helix Level Scheme of ¹⁷¹Yb nucleus



Double-Helix Level Scheme of ¹⁷¹Yb nucleus



Double-Helix Level Scheme of ¹⁷¹Yb nucleus

Decomposition of experimental band values as

$$E\gamma = 2c[(2I+k-1)+(k'+fn)],$$

where (2I+k-1) is the *average* part, and (k'+fn) is the *deviation* from average, with k' integer and fn fractional numbers, respectively.

• Rewrite $E\gamma=2c(2l+k+k'-1+fn)$ as

$$E\gamma=2c[1+fn/(2l+k+k'-1)]\times(2l+k+k'-1)$$
, with $2c_{band}=2c[1+fn/(2l+k+k'-1)]$:

- $E\gamma = 2c_{band} \times (2l+k+k'-1)$
- Spin I describes macroscopic rotation, i.e. 2π helix loops
- k+k' extra ang. momenta analog to *aligned intrinsic angular* momenta coming from microscopic intrinsic rotation, i.e. variations of 2π helix loops
- One gets **Bands Moment of Inertia**, $\mathcal{I}_{band}^{(2)} = \hbar^2/2c_{band}$

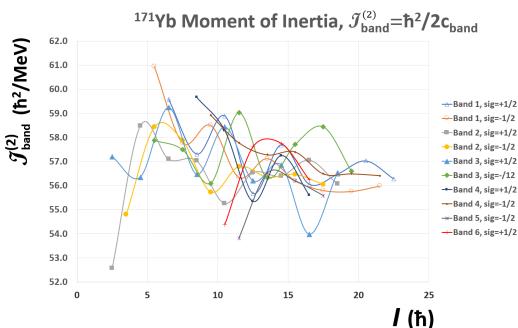


Table 1 ¹⁷¹Yb data for the Band 2 sig=+1/2 (ground state band)

Table 7 ¹⁷¹Yb data for the Band 4 sig=+1/2

1	Eγ(keV)	Εγ/2 c	(2I+k+k'-1)	${oldsymbol{\mathcal{J}^{(2)}_{band}}}$ (${f h^2/MeV}$)	\sum_{levels} (E γ /2c)	$\sum_{levels} (2l+k+k'-1)$
5/2 ⁻	76.1	4.29	4	52.6	4.29	4.0
9/2 ⁻	171.0	9.63	10	58.5	13.92	14.0
13/2 ⁻	262.7	14.80	15	57.1	28.72	29.0
17/2 ⁻	350.7	19.76	20	57.0	48.48	49.0
21/2 ⁻	434.3	24.47	24	55.3	72.95	73.0
25/2 ⁻	513.0	28.90	29	56.5	101.85	102.0
29/2 ⁻	585.2	32.97	33	56.4	134.82	135.0
33/2 ⁻	666.0	37.53	38	57.1	172.35	173.0
37/2 ⁻	713.5	40.19	40	56.1	212.54	213.0

1	Eγ(keV)	Εγ/2c	(2I+k+k'-1)	$oldsymbol{j_{band}^{(2)}}$ (ħ²/MeV)	\sum_{levels} (E γ /2c)	\[\sum_{levels} (2 +k+k'-1) \]
13/2 ⁺					55.27	23.0
17/2+	284.9	16.05	<u>17</u>	59.7	71.32	40.0
21/2+	360.3	20.30	<u>21</u>	58.3	91.62	61.0
25/2+	433.7	24.44	24	55.3	116.06	85.0
29/2+	506.6	28.54	29	57.2	144.60	114.0
33/2+	575.6	32.43	32	55.6	177.03	146.0
37/2+	636.4	35.85	36	56.6	212.88	182.0

Table 13 ¹⁷¹Yb linking transitions Band 4 sig=+1/2 to Band 1 sig=-1/2

1	Eγ(keV)	Εγ/2 c	(I+k+k')
13/2+	721.8	40.66	<u>7.5</u>
17/2+	764.5	43.07	<u>10.5*</u>
21/2+	800.2	45.08	<u>12.5*</u>
25/2+	825.6	46.51	<u>13.5</u>

Table 14 ¹⁷¹Yb linking transitions Band 4 sig=-1/2 to Band 1 sig=+1/2

1	Eγ(keV)	E γ/2c	(I+k+k')
15/2+	745.2	41.98	<u>8.5</u>
19/2+	788.3	44.41	<u>11.5*</u>

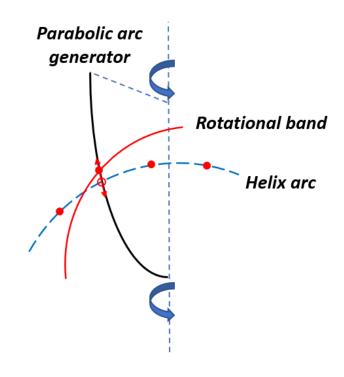
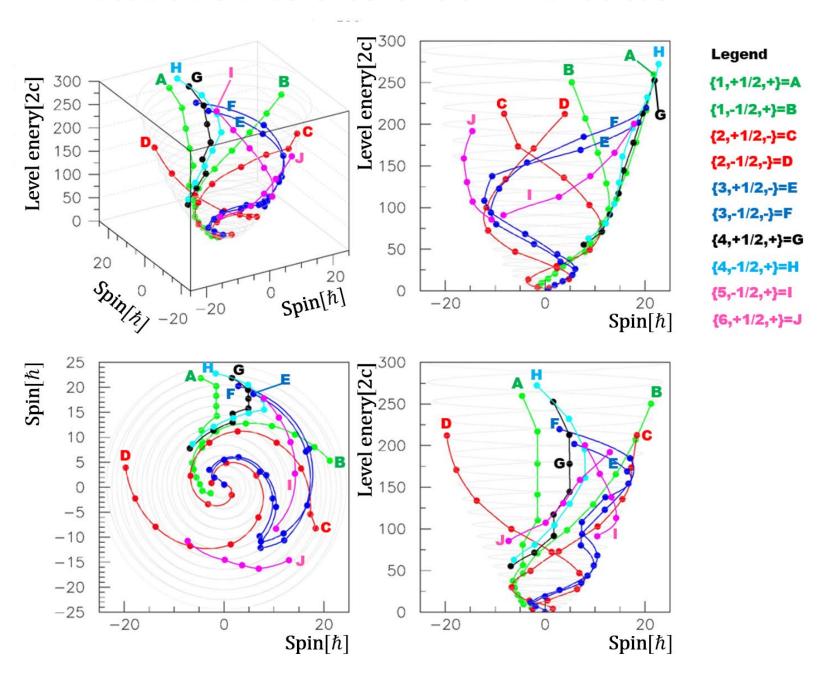


Fig. (Helix arc and parabolic arc generator crossing)

Double Helix Level Scheme of ¹⁷¹Yb nucleus



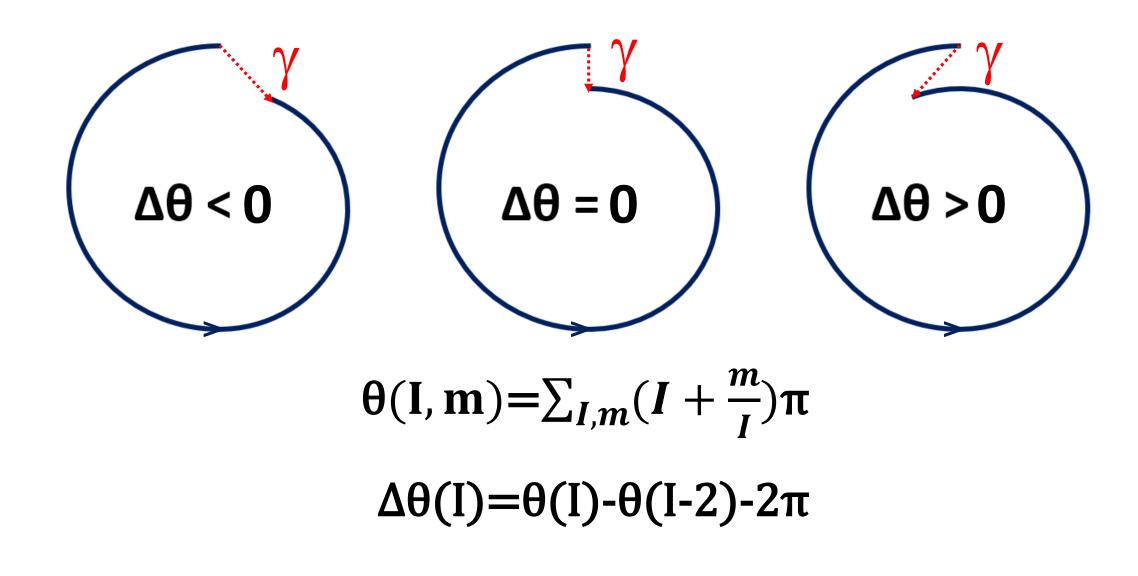


Fig. ($\Delta\theta$ apparent band rotation on the helicoid)

¹⁷¹Yb Phase Shifts

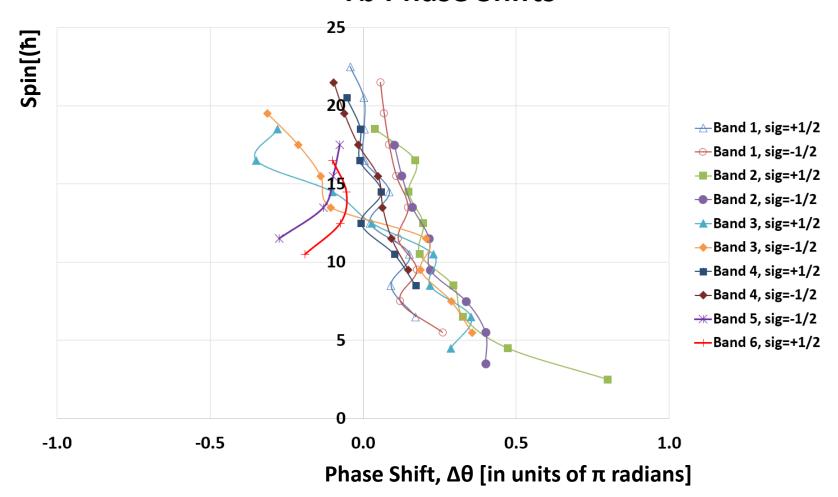


Fig. (171Yb Phase Shifts)

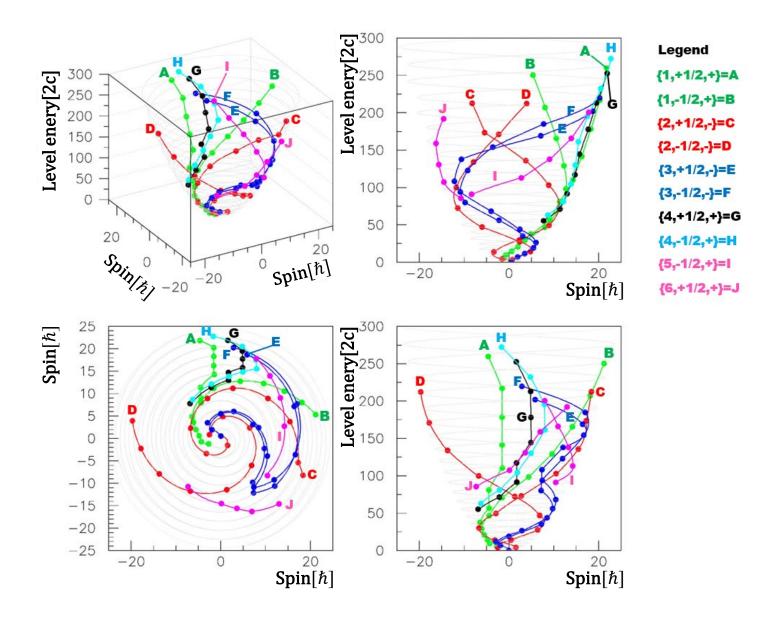
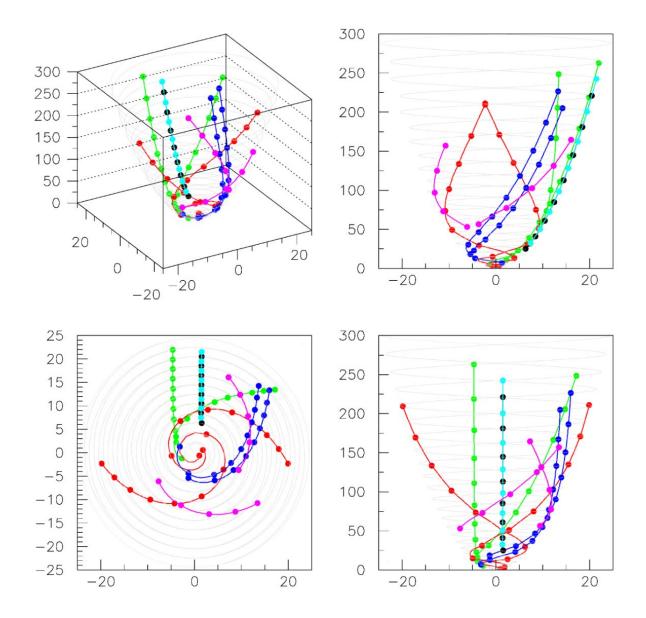
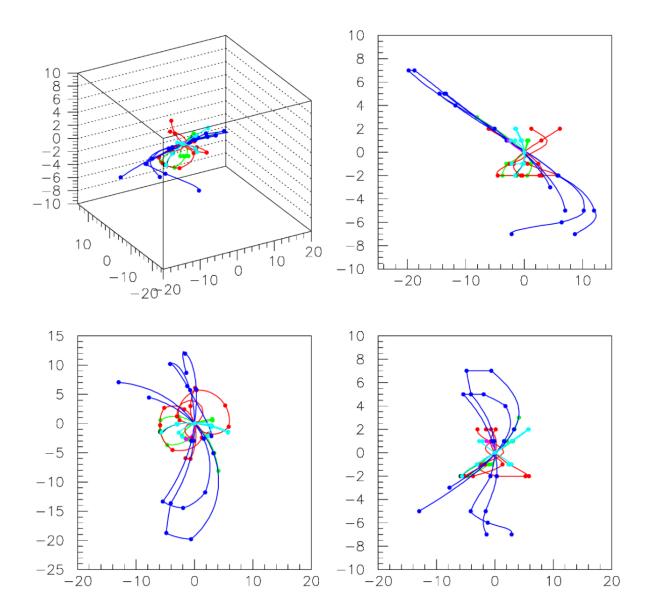


Fig. (Double helix of ¹⁷¹Yb nucleus)





¹⁷¹Yb nucleus Double Helix Level Scheme

Part I: Level scheme of Generalized Ideal Rotational Bands

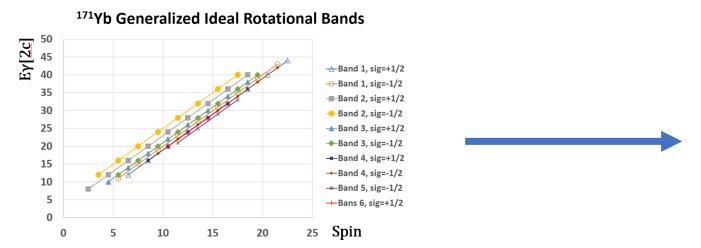


Fig. (Generalized Ideal Rotation Bands)

Part II: Level scheme of Real Rotational Bands

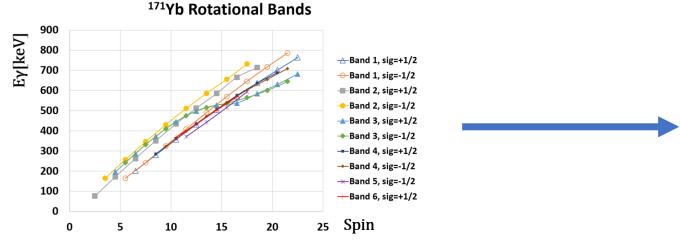
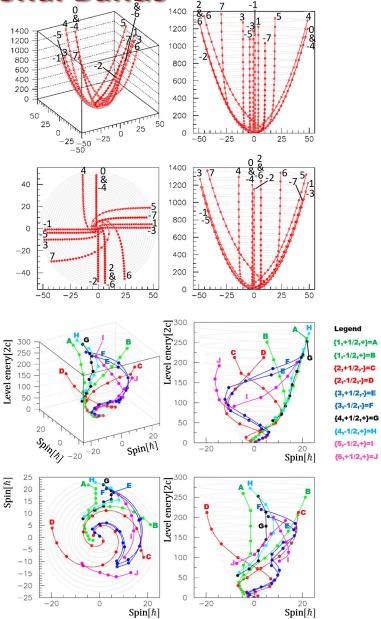


Fig. (E γ 's versus spins)



Double Helix - Conclusions

- ✓ Do we have a re-concept of a Level Scheme?
- ✓ Yes. The new concept of a level scheme is probed by the construction of **Double Helix Level Scheme** of ¹⁷¹Yb.
- ✓ Do we have new physical insight?
- ✓ Yes. Double Helix is:
 - > semiclassical description of nuclear macroscopic rotation
 - with apparent clockwise and counterclockwise rotations of the γ-rays rotational bands exhibiting the microscopic rotation.
- ✓ By combining linear and quadratic scales, Double Helix eliminates arbitrariness and transform the Level Scheme into an integrating imagistic technique of nuclear motion.
- ✓ Double Helix, a new class of the general vortex motions in nature.

DOUBLE HELICOID LEVELS SCHEME (DHLS)

