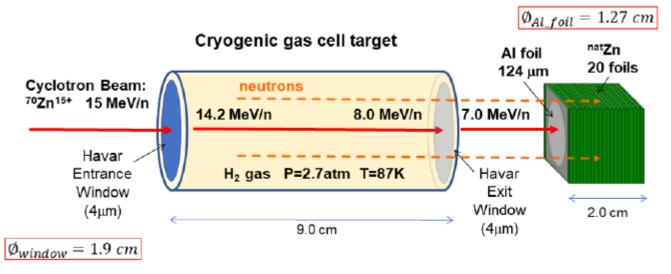
Texas A&M University US Nuclear Data Program

TAMU NSDD CENTER Medical Radioisotopes Production Studies: ⁶⁷Cu Case

N. Nica

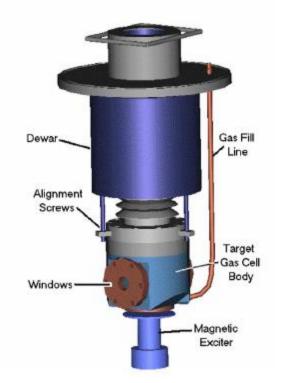
Texas A&M Evaluation Center Rationale for Medical Isotopes Production: *The case of ⁶⁷Cu*

- Medical radionuclides: central in nuclear medicine in the fields of diagnostic imaging and radioimmunotherapy (RIT):
 - Low-range highly ionizing radiation: β^- , α particles, Auger or conversion electrons
 - New β- emitters of interest: ⁴⁷Sc (T_{1/2}=3.4 d), ⁶⁷Cu (T_{1/2}=2.6 d), ¹⁰⁵Rh (T_{1/2}=1.5 d), ¹⁶¹Tb (T_{1/2}=6.9 d), ¹⁸⁶Re (T_{1/2}=3.7 d)
 - ⁶⁷Cu case:
 - Trace element copper takes part in basic biochemical processes
 - Can be linked to biologically important molecules as antibodies, proteins, etc.
 - The ranostic pairs: ^{67}Cu can work in conjunction with same type of radio pharmaceuticals as ^{64}Cu (T $_{1/2}$ =12.7 h) or ^{61}Cu (T $_{1/2}$ =3.3 h)
 - β^- decay (E_{max}=577 keV); γ radiation of 185 keV (48.7%), 93 keV (16%) and 91 keV (7%).
 - Single-photon emission computed tomography (SPECT) : imaging the radiotracer distribution (with existing technology for the 140 keV γ rays of ^{99m}Tc)
 - ⁶⁷Cu offers the possibility of SPECT imaging and treatment of smaller size tumors (up to 4 mm)
 - Main factor limiting wider preclinical and clinical use: limited availability


Texas A&M Evaluation Center The case of ⁶⁷Cu: *Production matters*

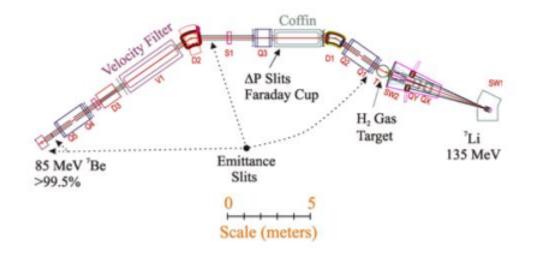
- Last about 50 years: nuclear reactors
- New methods based on: particle accelerators
 - $\ ^{68}Zn(p,2p)^{67}Cu, Ep = 70 100 MeV; \ ^{70}Zn(p,\alpha)^{67}Cu; \ ^{70}Zn(d,\alpha n)^{67}Cu; \ ^{nat}Zn(d,x)^{67}Cu, \ ^{64}Ni(\alpha,p)^{67}Cu; \ ^{70}Zn(d,\alpha n)^{67}Cu; \ ^{$
 - Accelerator-produced neutrons
 - Photonuclear reactions using bremsstrahlung photons from high-intensity electron linacs
 - New: isotope harvesting in projectile fragmentation (e.g. stopped in aqueous solutions)
 - All: ⁶⁷Cu produced inside expensive target materials which should be processed for separating ⁶⁷Cu and recycling the target materials
- Innovative approach & advantages: Inverse-kinematics nuclear reactions
 - Reaction products are strongly focused along the beam direction and can relatively easily be collected for immediate use.
 - Use low energy beam tuned to maximize ⁶⁷Cu but reduce impurities.
 - Collect almost pure ⁶⁷Cu in a catcher and use it with radiochemical minimum processing

Texas A&M Evaluation Center Expanded Involvement in Applied Measurements for Medical Isotopes Production by Inverse Kinematics


Theme: Research for Medical Isotopes Production by Inverse Kinematics

- Innovative method for the production of important medical radioisotopes based on the nuclear reaction in inverse kinematics, by:
 - Directing a heavy ion beam of appropriate energy on a light target (e.g., H, d, He) and
 - Collecting the isotope of interest on an appropriate catcher after the target.

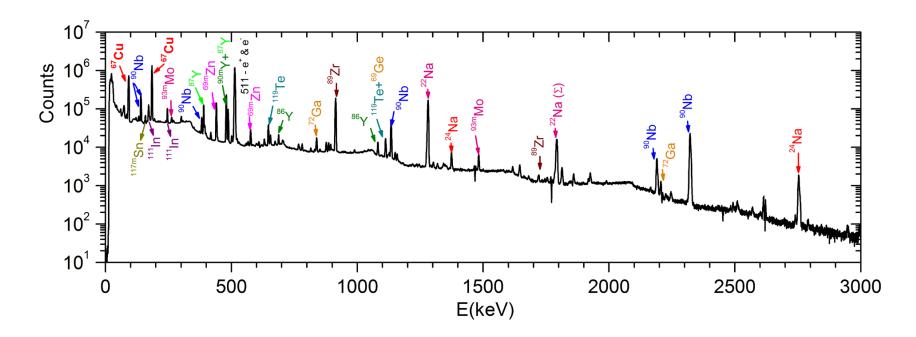
Texas A&M Evaluation Center The case of ⁶⁷Cu: *Cryogenic gas target cell*


• Important asset: Cryogenic gas target cell

Texas A&M Evaluation Center The case of ⁶⁷Cu: *MARS Spectrometer*

• Important asset: MARS spectrometer to be used for beam and reaction products diagnostics

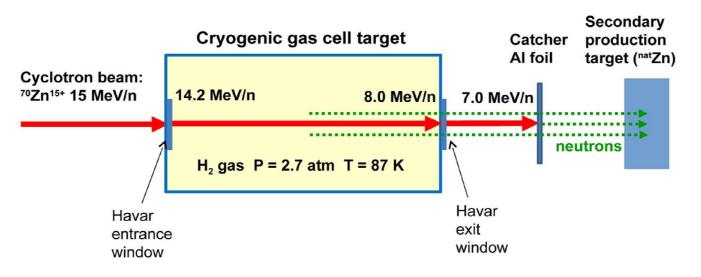
Momentum Achromat Recoil Separator layout

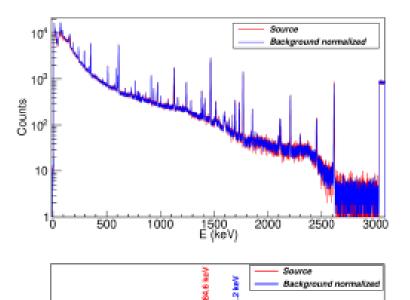


Texas A&M Evaluation Center The case of ⁶⁷Cu: *Irradiation*

- Beam:
 - 6.5 h with a beam current of 0.19(5) pnA
 - Average equilibrium charge (LISE++): 26+
 - Two Faraday cups: before the gas cell and after same ladder as catcher
 - Suppression test run with ²¹Ne beam, 28 MeV/nucleon, 40% reduction

Texas A&M Evaluation Center The case of ⁶⁷Cu: *Off-line y-spectra measurement*


- Cooling time: 36.5 h
- Catcher foil placed at 17.2(10) mm in front of HPGe γ detector, 2-3% dead time
- ¹⁵²Eu energy calibration
- Absolute efficiency calibration done with GEANT4 and EGSnrc codes: 10% unc
- Spectra acquired for 67.3 h, background-subtracted



Texas A&M Evaluation Center The case of ⁶⁷Cu: *Activities*

Radio- nuclide	Decay mode	Half life	Εγ (keV)	Ιγ (%)	Principal Production routes	А _{ЕОВ} (kBq)	$\left(\frac{\frac{H_{EOB}}{kBq}}{pnA.h}\right)$
⁶⁷ Cu	β-	61.83 h 12	91.266(5)	7.0(1)	p(⁷⁰ Zn, ⁶⁷ Cu)α	2.16(12)	1.8(5)
			93.311(5)	16.1(2)			
			184.577(10)	48.7(3)			
^{69m} Zn	IT, β ⁻	13.76 h 2	438.63(2)	94.77(20)	p(⁷⁰ Zn, ⁶⁹ mZn)d	2.55(26)	2.2(6)
⁹⁰ Nb	ε+ β-	14.60 h 5	1129.224(15)	92.7(4)	²⁷ Al(⁷⁰ Zn, ⁹⁰ Nb)x	2.38(23)	2.0(6)
			2318.968(10)	82.03(16)	⁵⁹ Co(⁷⁰ Zn, ⁹⁰ Nb)x		
			2186.242(25)	17.96(16)	⁵² Cr(⁷⁰ Zn, ⁹⁰ Nb)x		
^{87m} Y	IT	13.37 h 3	380.79(7)	78	²⁷ Al(⁷⁰ Zn, ⁸⁷ mY)x	0.87(9)	0.74(22)
⁸⁹ Zr	ε+ β+	78.41 h 12	908.96(4)	100	²⁷ Al(⁷⁰ Zn, ⁸⁹ Zr)x	0.62(6)	0.52(16)
²² Na	ε ⁺ β ⁺	2.6019 y 4	1.27453(2)	99.944(14)	²⁷ Al(⁷⁰ Zn, ²² Na)x	0.46(5)	0.41(12)
					²⁷ Al(n,x) ²² Na		
⁸⁶ Y	ε+ β+	14.74 h 2	627.72(10)	32.6(10)	²⁷ Al(⁷⁰ Zn, ⁸⁶ Y)x	0.38(4)	0.32(10)
	-		1153.01(4)	30.5(9)	⁵⁹ Co(⁷⁰ Zn, ⁸⁶ Y) x		
			1920.72(13)	20.8(7)	⁵² Cr(⁷⁰ Zn, ⁸⁶ Y) x		
			1854.38(13)	17.2(5)			
			443.14(9)	16.9(5)			
			703.34(10)	15.4(4)			
⁸⁷ Y	ε ⁺ β ⁺	79.8 h 3	484.805(5)	89.7(3)	²⁷ Al(⁷⁰ Zn, ⁸⁷ Y)x	0.167(16)	0.15(4)
			388.531(3)	82	⁵⁹ Co(⁷⁰ Zn, ⁸⁷ Y) x		
					⁵² Cr(⁷⁰ Zn, ⁸⁷ Y) x		

Texas A&M Evaluation Center The case of ⁶⁷Cu: *Use of neutrons*

 10°

10³ 🖶

140

160

180 E (keV)

200

220

240

120

Counts:

- Block of ^{nat}Zn 25.4×25.4×20 mm³ activated with neutrons;
- Measured for 40 h starting 7.5 days after the 6.5 h beam irradiation
- TALYS simulation: 1.6 neutron/reaction act on average mainly from ⁶⁷Zn(n,p)⁶⁷Cu reaction
- Exerimental result: **5.3(8)** Bq of ⁶⁷Cu (end of irradiation)
- Still to correct for neutron ang. distribution (2% n flux collected), γ attenuation in the source (about 50%) and ⁶⁷Zn natural abundance (4.04%)

Texas A&M Evaluation Center The case of ⁶⁷Cu: *Conclusions*

Advantages of inverse kinematics and setup

- Enhanced isotope collection at forward angles and easier harvesting and use of ⁶⁷Cu.
- Advantage of minimizing expensive ⁷⁰Zn isotope (0.6% natural abundance) at mg/day rate as projectile instead of g/day as source (plus radiochemistry & recycling).
- Minimize the production of radioimpurities arising from the main reaction by choosing the appropriate reaction channel and the subsequent cooling time of the products.
- Entrance Havar Window (Co, Cr, Ni, W, etc.) :
 - Peripheral or semiperipheral (deep-inelastic) collisions have rather wide angular distributions and are expected to mostly miss the catcher foil
 - Products of complete or nearly complete fusion are forward-focused but are heavier and slower than the beam and may mostly stop in the gas.
- Exit Havar Window & Catcher:
 - Adjust gas cell parameters (pressure, temperature, length) in order that primary beam reaches this Window & Catcher near or below the Coulomb barrier of the relevant reactions (e.g., 3.5-4.0 MeV/nucleon).
 - For Catcher one can use water or other material (salt, sugar, etc.) in order to collect the radioisotopes in a convenient chemical form for further processing.

Texas A&M Evaluation Center The case of ⁶⁷Cu: *Conclusions*

Advantages of inverse kinematics and setup

- 1 particle µA beam can produce mCi's of ⁶⁷Cu per 24 h of irradiation.
 - stable isotopes (⁷⁰Zn, ⁶⁹Ga, etc) implanted in the catcher should be produced at biochemically insignificant quantities
- Use cooled windows, lower pressure (1.0-1.5 atm), increase length, lower temperature (with cryo-coolers)
- Can use liquid H₂ targets (1-2 mm for 8-10 mg/cm²) at 20 K (with Gifford-McMahon refrigerator)
- Cyclotron Institute at TAMU, the facility houses two cyclotrons:
 - K150 cyclotron which can produce high-intensity heavy-ion beams (up to around Kr) with energies up to around 12–15 MeV/nucleon, suitable for the production of relatively large activities of radioisotopes
 - K500 cyclotron, employed in the present experiment, which can produce lower currents of heavy-ion beams (up to U) and in a broader energy range (up to 20–40 MeV/nucleon depending on the isotope).
- Both the K150 and the K500 cyclotrons may be successfully used for the development and production of a variety of non-standard radioisotopes at activities appropriate for medical studies on small animals.