Texas A&M Evaluation Center Strategic Priorities

- Continuing ENSDF Mass Chain Evaluation (1 FTE)
 - First Strategic Priority according to the Mission Statement. All other priorities will be strictly subordinated to this purpose
- Produce experimental nuclear data to aid data evaluation
 - Precision Internal Conversion Coefficients Measurements at Cyclotron Institute, Texas A&M University to give USDNP the best approach for ENSDF ICC-calculated values (concluding cases pending on conditions)
- Experimental studies of Medical Isotopes
 - Invers kinematics methodology, Cyclotron Institute, Texas A&M University
- Reevaluation of data procedures for basic science and data evaluation Level scheme re-concept based on Repeatability, a newly revealed experimental data evidence

Texas A&M Evaluation Center Expanded Involvement in Applied Measurements of Precision Internal Conversion Coefficients

Theme: Precision Measurements for USNDP

 Texas A&M Center implied decisively by decade-long program of Internal Conversion Coefficient (ICC) Precision Measurements to guide USNDP for best approach of theoretical ENSDF database ICC values

						Calculated α_{K} values:		
	Pare	ent		Transition	Measured	No	"Frozen	SCF
	Stat	е	Multipolarity	Energy (keV)	α_{K}	vacancy	Orbitals"	
	93m	b	M4	30.760(5)	25600(900)	23960	25990	25440
:	103m	Rh	E3	39.752(6)	141.1(23)	131.3	139.4	137.2
:	, 111m	Cd	E3	150.825(15)	1.449(18)	1.425	1.451	1.446
	119m	Sn	M4	65.660(10)	1621(25)	1544	1618	1603
:	125m	Те	M4	109.276(15)	185.0(40)	179.5	185.2	184.2
(, 127m	Те	M4	88.23(7)	484(6)	468.6	486.4	483.1
	, 134m	Cs	E3	127.502(3)	2.742(15)	2.677	2.741	2.73
	137m	Ba	M4	661.659(3)	0.0915(5)	0.09068	0.0915	0.091
9	, 193m	lr	M4	80.22(2)	103.0(8)	92.0	103.3	99.7
	197m ا	Pt	M4	346.5(2)	4.23(7)	4.191	4.276	4.265
					χ ² :	252	1.5	21.5

Texas A&M Evaluation Center Expanded Involvement in Applied Measurements for Medical Isotopes Production by Inverse Kinematics

Theme: Research for Medical Isotopes Production by Inverse Kinematics

- Innovative method for the production of important medical radioisotopes based on the nuclear reaction in inverse kinematics, by:
 - Directing a heavy ion beam of appropriate energy on a light target (e.g., H, d, He) and
 - Collecting the isotope of interest on an appropriate catcher after the target.

• **Case Studies** (at this stage beyond the proof-of-principle):

- ⁶⁷Cu (T_{1/2} = 62 h) via the reaction of ⁷⁰Zn beam of 15 MeV/nucleon with a cryogenic hydrogen gas target
- ⁹⁹Mo (T_{1/2} = 66 h) via the reaction of ¹⁰⁰Mo of 12 MeV/nucleon with a cryogenic ⁴He cryogenic gas target
- Secondary neutrons from the primary reaction were used to irradiate a secondary target for further radioisotope production (to be further developed)
- At K500 Cyclotron & MARS spectrometer of Texas A&M Cyclotron Institute

- Radioactive isotopes identified by γ -ray spectroscopy:
 - (a) ⁶⁷Cu run
 - (b) ⁹⁹Mo run

Texas A&M Evaluation Center New Initiatives & Directions

Theme: Data Evaluation for Basic Physics

 Reevaluation of data procedures for basic science and data evaluation Level scheme re-concept based on Repeatability, a newly revealed experimental evidence

