
Precision β decay: nuclei

Outline

Nuclear β decay as a probe for physics beyond the standard model (white paper)

M. Brodeur,¹ N. Buzinsky,² M.A. Caprio,¹ J.A. Clark,³ P.J. Fasano,¹ J.A. Formaggio,⁴ A.T. Gallant,⁵ A. Garcia,² S. Gandolfi,⁶ S. Gardner,⁷ A. Glick-Magid,² L. Hayen,^{8,9} H. Hergert,^{10,11} J. D. Holt,^{12,13} M. Horoi,¹⁴ M.Y. Huang,¹⁵ K.D. Launey,¹⁶ K.G. Leach,^{17,18} B. Longfellow,⁵ A.E. McCoy,^{18,19} D. Melconian,^{20,21} P. Mohanmurthy,⁴ D.C. Moore,²² P. Mueller,³ E. Mereghetti,²³ P. Navratil,²⁴ S. Pastore,^{19, 25} M. Piarulli,^{19, 25} D. Puentes,^{26, 18} B.C. Rasco,²⁷ M. Redshaw,¹⁴ G.S. Sargsyan,⁵ G. Savard,^{3,28} N.D. Scielzo,⁵ C.-Y. Seng,^{2,18} A. Shindler,^{10,11} S.R. Stroberg,¹ J. Surbrook,^{26,18} A. Walker-Loud,²⁹ C. Wrede,^{26,18} A. R. Young,^{30,31} and V. Zelevinsky^{26,18} ¹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556 USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA ⁴Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139 ⁵Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁶Theoretical Division, Los Alamos National Laboratory ⁷Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 ⁸Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA ⁹Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ¹⁰Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ¹¹Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ¹²TRIUMF, Vancouver, BC V6T 2A3, Canada ¹³Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada ¹⁴Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA ¹⁵Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA ¹⁶Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ¹⁷Department of Physics, Colorado School of Mines, Golden, CO 80401, USA ¹⁸Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA ¹⁹Department of Physics, Washington University in Saint Louis, Saint Louis, MO 63130, USA ²⁰Cyclotron Institute, Texas A&M University, 3366 TAMU, College Station, Texas 77843-3366, USA ²¹Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, Texas 77843-4242, USA 22 Weight Internet

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

TEXAS A&M

Outline

- CKM matrix unitarity tests
 - * Theory has made huge progress
 - * New experiments targeting low-Z cases, mirror transitions

Searches for scalar and tensor currents

- Spectrum-shape for Fierz
- ✤ Ion and atom traps

• β decays for neutrino physics

- ***** Ultra-low Q-values for direct m_{ν} measurements
- Sterile neutrinos via EC
- Reactor antineutrino anomaly

In case I run out of time (which I will...)

- Start with the White Paper recommendations:
 - * Experimental + theoretical alliance for Vud and CKM unitarity
 - Investing in small- and mid-scale projects
 - Establishing support for nuclear theory
 - Developing cutting-edge techniques
 - Promote diverse and inclusive environment, and better support students
- Thanks for input (apologies to all)
 - Maxime Brodeur, Drew Byron, Jason Clark, Leendert Hayen, Kyle Leach, Charlie Rasco, Matt Redshaw, Nick Scielzo, Chien Yeah Seng, Louis Varrian, and everyone on the nuclear β decay White Paper

β -decay correlations and ft values

Quick reminder:

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{l} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) + \cdots \right]$$

$$scalar$$

$$a_{\beta\nu} = \frac{-|C_S|^2 - |C'_S|^2}{|C_S|^2 + |C'_S|^2}$$

$$a_{\beta\nu} = \frac{|C_V|^2 + |C'_V|^2}{|C_V|^2 + |C'_V|^2}$$

$$a_{\beta\nu} = \frac{|C_V|^2 + |C_V'|^2 - |C_S|^2 - |C_S'|^2}{|C_V|^2 + |C_V'|^2 + |C_S'|^2 + |C_S'|^2} = 1??$$

$$b = \frac{-2\Re e(C_S^*C_V + C_S'^*C_V')}{|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2} = 0??$$

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

β -decay correlations and ft values

Quick reminder:

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{l} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) + \cdots \right]$$

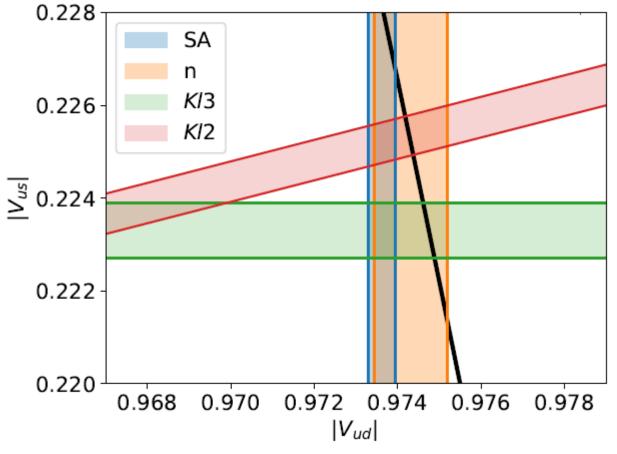
Comparative half-life:

$$f = \int F(Z', E)C(E)pE(E - E_0)^2 dE \sim Q^5$$

and

$$t = \frac{t_{1/2}}{Br} (1 + P_{EC}) \quad \boxed{\frac{0^+ T = 1}{1 + T = 1}} \quad Br \quad \downarrow$$

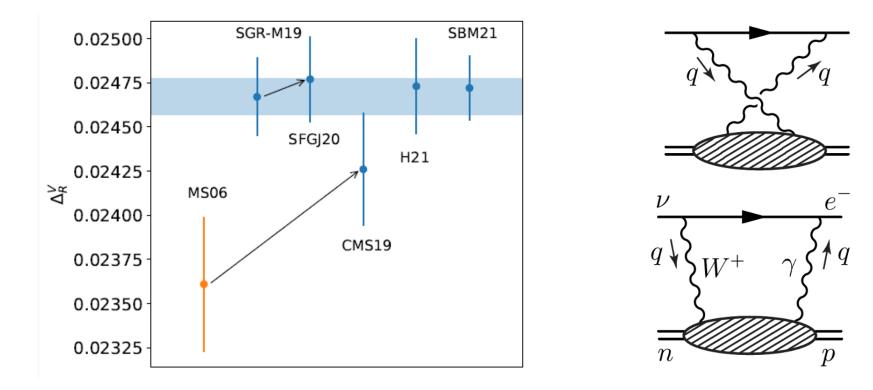
$$Ft \equiv ft(1 + \delta'_R)(1 + \delta_{NS} - \delta_C)$$
$$= \frac{K/G_F^2}{|V_{ud}|^2 M_F^2 (1 + \Delta_R^V)}$$


D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

CKM Unitarity

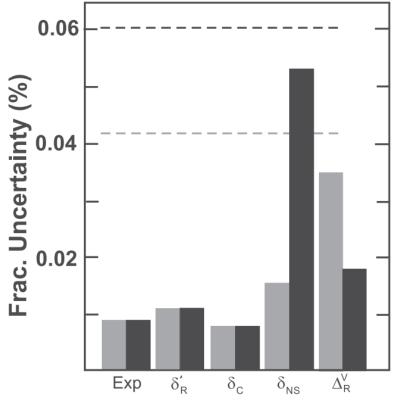
• There are currently indications of non-unitarity at a few σ level


$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.9982(6)$$

D. Melconian

Recent development: theory

Hint of new physics due largely to new calculations of Δ_R^V


Smaller uncertainty and a shift

Fundamental Symmetries Town Meeting – Chapel Hill Dec 14 2022

Recent development: theory

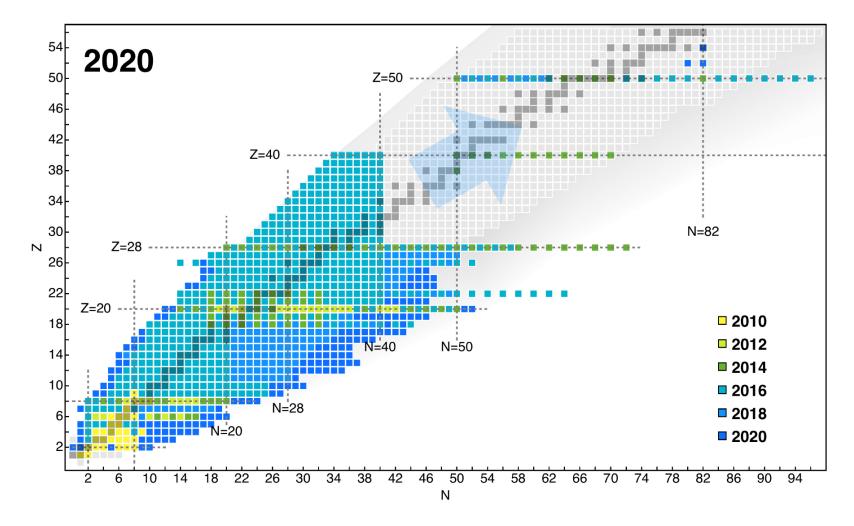
- Hint of new physics due largely to new calculations of Δ_R^V
- New effects to $\delta_{\rm NS}$ from quasi-elastic contributions and nuclear polarization effects (1812.03352, 1812.04229): $\delta_{\rm NS}(E)$
 - Now the (by far) dominant theoretical uncertainty
 - Rigorous theory framework based on dispersion relation to compute the NS effects (2211.10214)
 - * New collaborations are formed to compute δ_{NS} with ab-initio methods for light nuclei

Dec 14 2022

ĀМ

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill


Recent development: theory

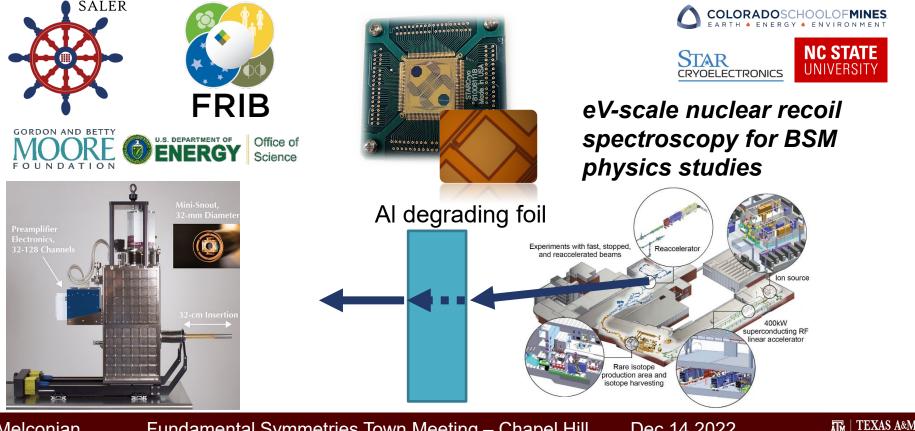
- Hint of new physics due largely to new calculations of Δ_R^V
- New effects to $\delta_{\rm NS}$ from quasi-elastic contributions and nuclear polarization effects (1812.03352, 1812.04229): $\delta_{\rm NS}(E)$
 - * Now the (by far) dominant uncertainty comes the SM theory input
- New connections are found between experimental measurements of charge radii and the isospin breaking correction (δ_c) (2208.03037) and recoil corrections in β decay (C.Y.Seng, 2212.XXXX, will post soon)

Ab initio nuclear theory

Amazing progress in just 10 years!!

H. Hergert, Frontiers in Physics (2020)

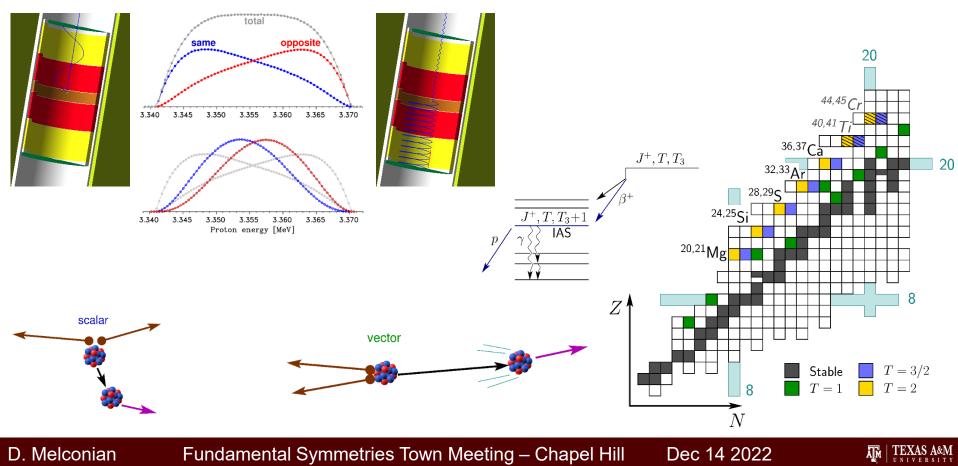
D. Melconian


Fundamental Symmetries Town Meeting – Chapel Hill

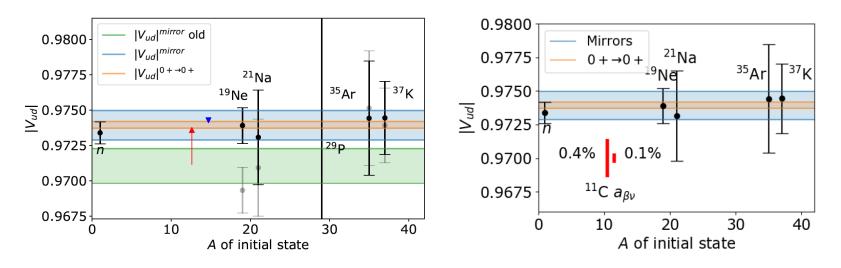
• Being low-Z, ¹⁰C and ¹⁴O are the most interesting (scalar currents); Ronald will talk about this later

SALER: Superconducting Array for Low-Energy Radiation

Direct implantation and measurement of eV-scale radiation from short-lived ($T_{1/2}$ > 1 ms) rare isotopes for BSM physics searches (CKM unitarity, exotic weak currents, etc.)


D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

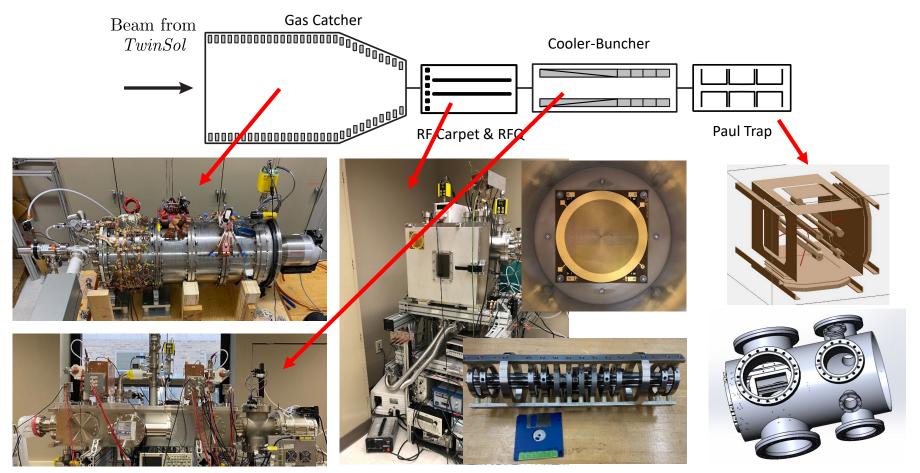

Dec 14 2022

ĀМ

- Being low-Z, ¹⁰C and ¹⁴O are the most interesting (scalar currents); Ronald will talk about this later
- Proton-rich cases to be studied with TAMUTRAP via the kinematic shift of β -delayed proton decays

- Being low-Z, ¹⁰C and ¹⁴O are the most interesting (scalar currents); Ronald will talk about this later
- Proton-rich cases to be studied with TAMUTRAP via the kinematic shift of β -delayed proton decays
- Mirror nuclei continue to be improved as an alternate to $0^+ \rightarrow 0^+$ (and of course the neutron, next talk)
 - * Lifetimes, β - ν correlations with St. Bendict @ Notre Dame

TEXAS A&M


Ā∭M

Dec 14 2022

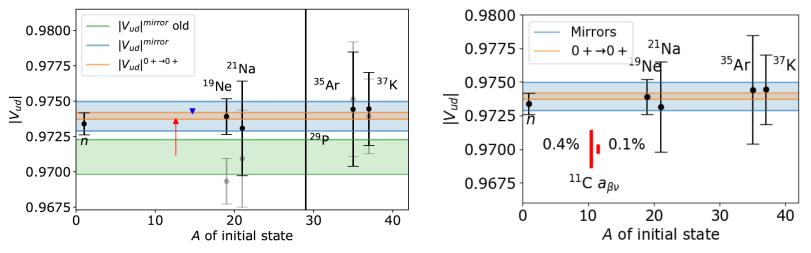
D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

Superallowed Transisiton Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict)

- Gas catcher from ANL: RF/DC & vacuum tested; transport tests underway
- RF carpet tested; ion guide assembled and RF circuit being tested
- Cooler/buncher commissioned
- Paul trap has been simulated and manufactured

NIVERSITY OF JOTRE DAME


s

N

Р

А

- Being low-Z, ¹⁰C and ¹⁴O are the most interesting (scalar currents)
- Proton-rich cases to be studied with TAMUTRAP via the kinematic shift of β -delayed proton decays
- Mirror nuclei continue to be improved as an alternate to $0^+ → 0^+$ (and of course the neutron, next talk)
 - * Lifetimes, β - ν correlations with St. Bendict @ Notre Dame
 - * Lifetimes, branching ratios (fast-tape + HPGe), β - ν correlations (TAMUTRAP) at the Cyclotron Institute

D. Melconian

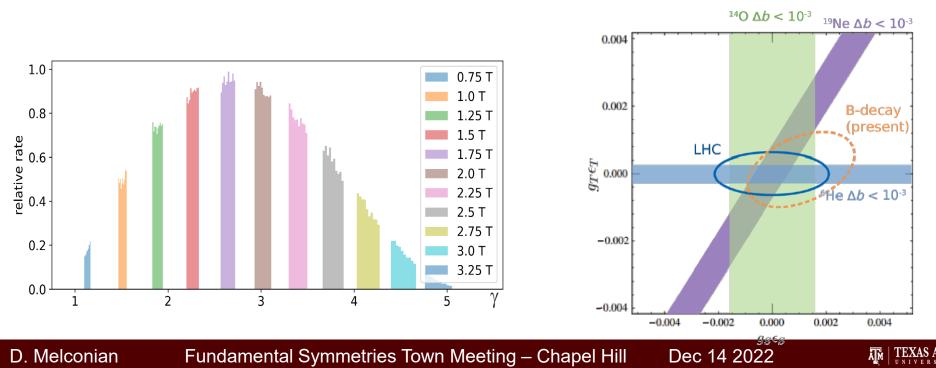
Fundamental Symmetries Town Meeting – Chapel Hill

Outline

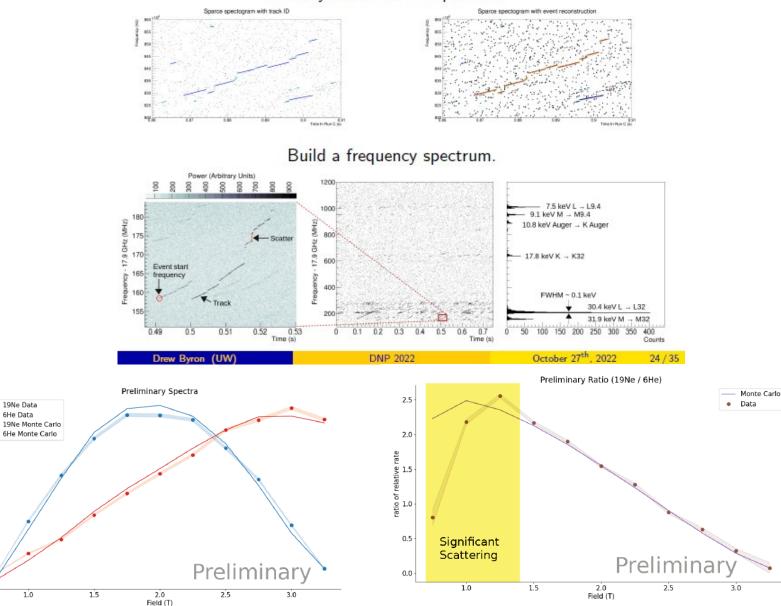
- CKM matrix unitarity tests
 - * Theory has made huge progress
 - * New experiments targeting low-Z cases, mirror transitions

Searches for scalar and tensor currents

- Spectrum-shape for Fierz
- Ion and atom traps


• β decays for neutrino physics

- ***** Ultra-low Q-values for direct m_v measurements
- Sterile neutrinos via EC
- Reactor antineutrino anomaly


Searches for Scalar/Tensor currents

- Most sensitive probe is b_{Fierz} linear in exotic couplings
- Cyclotron radiation emission spectroscopy (He6-CRES)
 - * ⁶He (GT), ¹⁹Ne (F/GT) and ¹⁴O (F); β^{\pm} opposite sign in b_{Fierz}
 - Much larger bandwidth needed compared to Project 8
 - * Other challenges: other modes, harmonics, wall effects

First CRES signals seen

Identify event start frequencies.

D. Melconian

1.75

1.50

1.25

relative rate 0.75

0.50

0.25

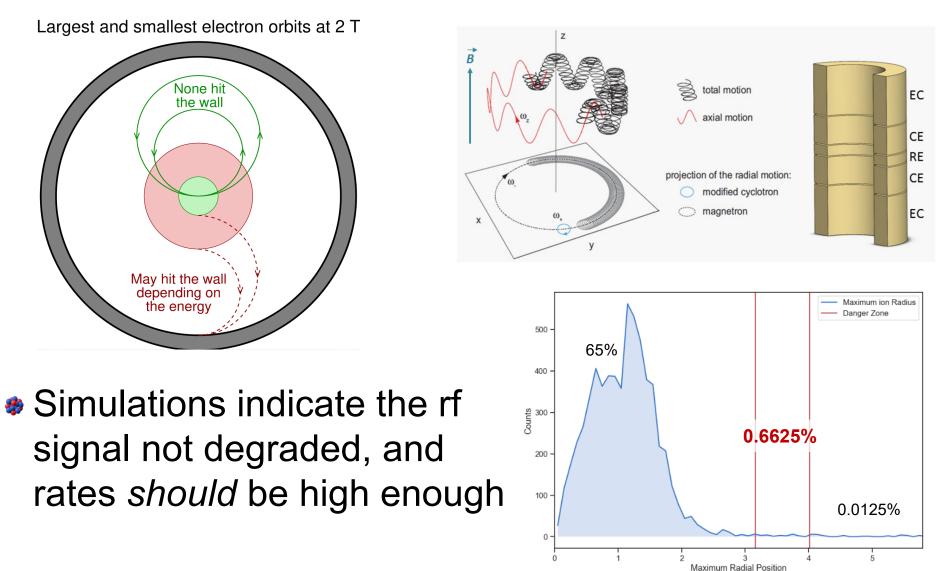
0.00

٠

6He Data .

1.0

Fundamental Symmetries Town Meeting – Chapel Hill


Dec 14 2022

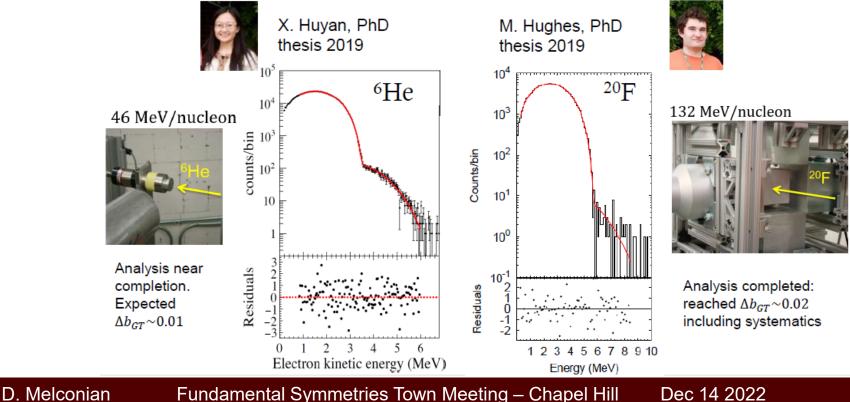
TEXAS A&M

Ā∭M

Ion trap + CRES

Wall effects expected to be a limiting systematic

Dec 14 2022

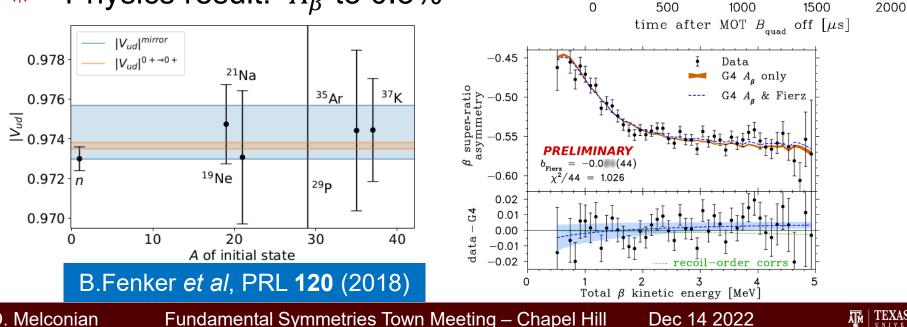

Ā∭M

TEXAS A&M

Searches for Scalar/Tensor currents

- Most sensitive probe is b_{Fierz} linear in exotic couplings
- Cyclotron radiation emission spectroscopy (CRES)
- Implantation at FRIB (Naviliat-Cuncic); next ^{26m}Al

Fragmentation reactions enable choosing the most suitable candidates.


- TRINAT has developed some pretty cool techniques
 - High nuclear polarization

 $P_{1/2}$ • 2 $ec{F}=ec{I}+ec{J}$

D. Melconian

B.Fenker *et al*, New J. Phys. 18 (2016)

Physics result: A_{β} to 0.3%

ĀМ TEXAS A&M Dec 14 2022

polarized

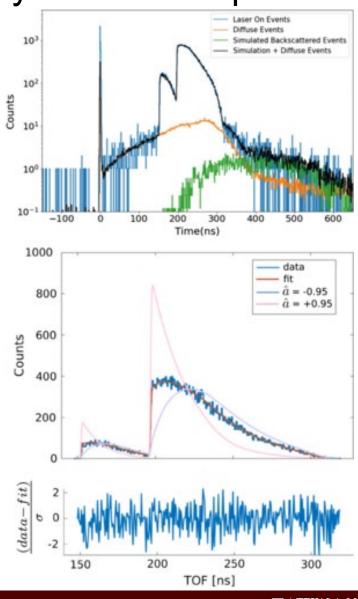
times

300 350 400 450 500

 $\langle |\boldsymbol{P}_{\rm nucl}| \rangle = 0.9913(9)$

۲s 8

6

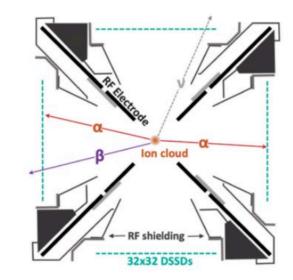

2

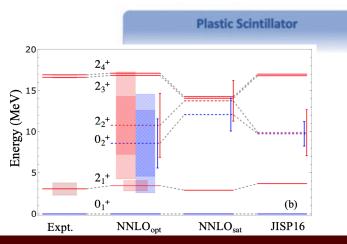
0

photoion events

TRINAT has developed some pretty cool techniques

- High nuclear polarization
- ***** Physics result: A_{β} to 0.3%
- * < 0.1% within reach!
- ⁶He at CENPA in collaboration with ANL
 - ★ Recently published result: $\tilde{a} = -0.3268(46)(41)$ $\Leftrightarrow 0.007 \leq |C_T/C_A| \leq 0.111 \text{ (90\% CL)}$ Muller *et al.*, PRL **129**, 182502 (2022)




We heard about the beta-decay Paul trap yesterday

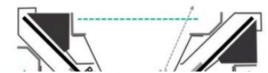
* β -α-α coincidence M.T. Burkey et al., PRL **128**, 202502 (2022)

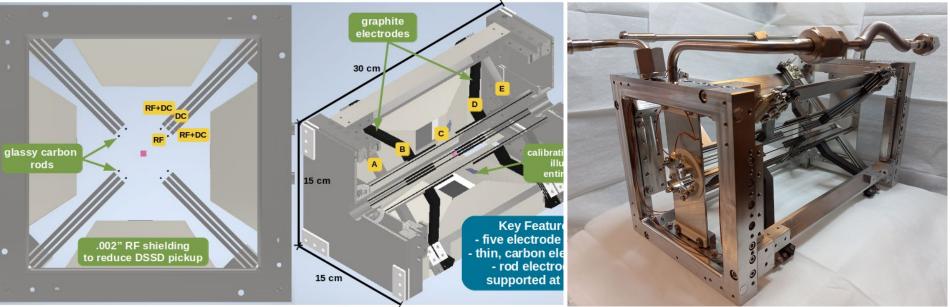
TABLE I. Summary of dominant systematic corrections and uncertainties, listed at 1σ .

Source			Correction	Uncertainty
Theory	Intruder state		+0.0005	0.0005
	(added linear			
	Recoil and radiative terms			0.0015
Experiment	α -energy calibration			0.0007
	Detector line shape			0.0009
	Data cuts			0.0009
	β scattering			0.0010
Total			+0.0005	0.0028
	j_2/A^2c_0	j_3/A^2c_0	d/Ac_{0}	b/Ac_0
2^+_1	-956 ± 37	-1547 ± 4	$42\ 10.0\pm 1$	$1.0 6.0 \pm 0.0$
$2^+_2(\mathrm{new})$	-10 ± 10	-80 ± 30	$-0.5 \pm$	$0.5 \ 3.7 \pm 0.$
2^+_3 (double	et 1) 12 ± 5	-60 ± 15	$0.3\pm0.$	$2 3.8 \pm 0.$
2^+_4 (double	et 2) 11 ± 3	-65 ± 11	$0.2\pm0.$	$2 3.8 \pm 0.$

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

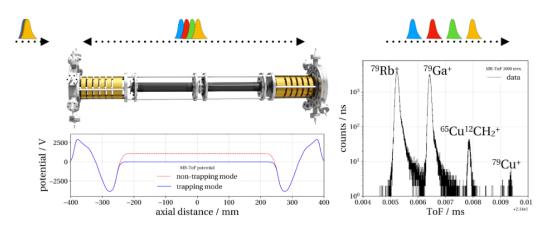

Dec 14 2022 🛛 🐺

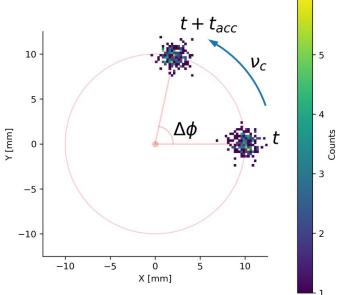

TEXAS A&M

We heard about the beta-decay Paul trap yesterday

* $\beta - \alpha - \alpha$ coincidence M.T. Burkey *et al.*, PRL **128**, 202502 (2022)

TABLE I. Summary of dominant systematic corrections and uncertainties, listed at 1σ .




***** Upgrade will reduce β scattering by 4 ×. Goal is to improve uncertainty by factor of 2 from recently published result.

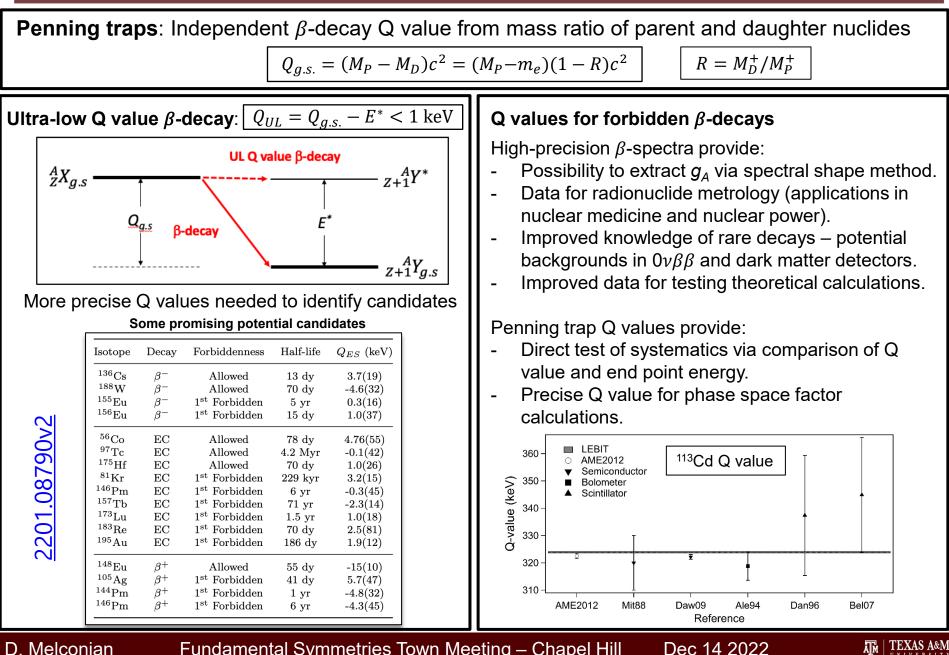
Mass measurements with Penning traps

- TOF-ICR the workhorse for many years
- Phase-image ion-cyclotron-resonance (PI-ICR) improves precision
 - ★ LEBIT, CPT (TITAN, JYFLTRAP, …)
- MR-TOF has really exploded in recent years; every major lab has one now

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

Outline


- CKM matrix unitarity tests
 - * Theory has made huge progress
 - * New experiments targeting low-Z cases, mirror transitions
- Searches for scalar and tensor currents
 - ✤ Spectrum-shape for Fierz
 - ✤ Ion and atom traps

• β decays for neutrino physics

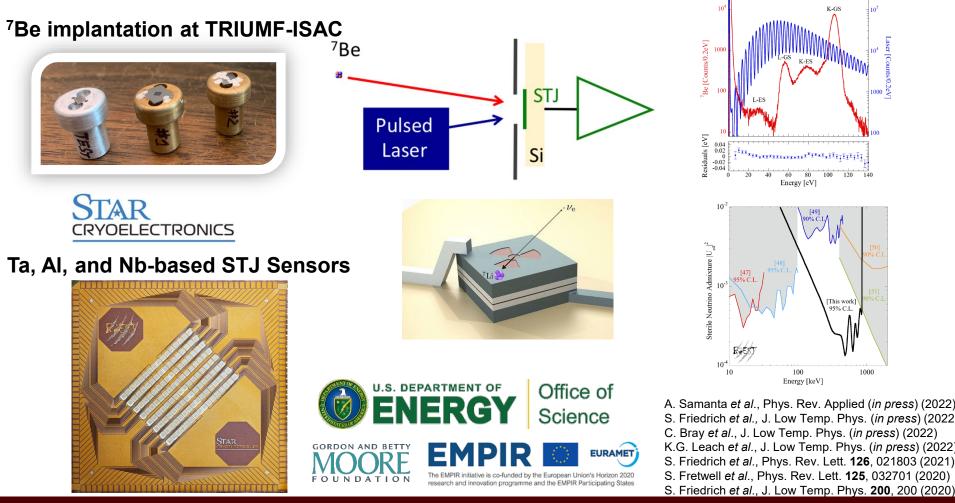
- ***** Ultra-low Q-values for direct m_{ν} measurements
- Sterile neutrinos via EC
- Reactor antineutrino anomaly

Ultra-low Q value measurements with CHIP-TRAP

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

BSM with Rare-Isotope Doped Superconductors

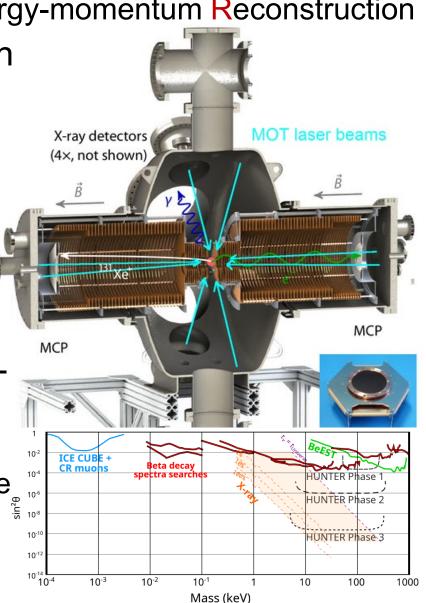


- Embedding radioactive atoms into superconducting tunnel junctions (STJs)
 - Measure eV-scale decay recoils
 - Search for keV MeV sterile neutrinos

000

1000

TEXAS A&M


D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

HUNTER

Heavy Unseen Neutrinos by Total Energy-momentum Reconstruction

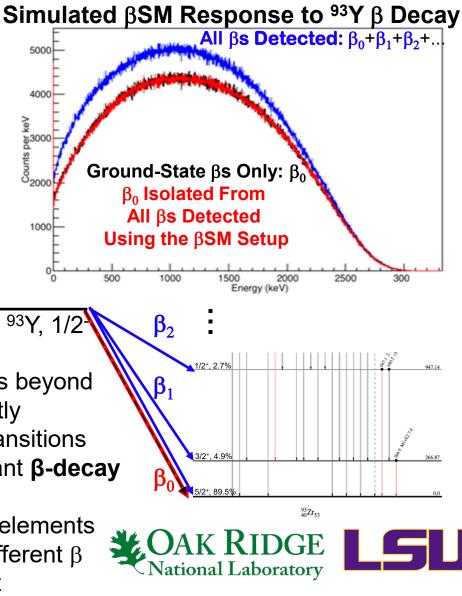
- Kinematic reconstruction of m_{ν} in individual EC decays of ¹³¹Cs atoms at rest
 - Kinematic reconstruction not an oscillation experiment. Measure all decay product momenta & reconstruct missing neutrino mass event-by-event
 - * ¹³¹Cs is at rest held in a Magneto-Optical Trap and laser cooled to 20 μK
 - Reaction Ion Microscopes measure recoil nucleus and Auger electron directions & momenta with high efficiency & resolution 0.1-1%

Dec 14 2022

AM TEXAS A&M

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill


Measuring β Transitions in Complex β Decays

Currently only β energy spectra of very simple β decays are studied

We are developing the β-Spectrum Module (βSM) with ORNL's MTAS Detector

to measure entire $\beta\text{-energy}$ spectra for each individual $\beta\text{-decay}$ transition

- Isolate Individual β transitions with ~99% efficiency
- Permits extraction of various allowed and 1^{st} -forbidden β shapes all from the same parent
- Improve reactor antineutrino flux predictions beyond the 5% level down to the ~1% level by directly measuring β-shape factors of individual β transitions
 Expand by hundreds the number of important β-decay shape factors that can be studied
- •Allows access to g_V and g_A , nuclear matrix elements •Can minimize systematics by measuring different β transitions from the same β -decaying parent

Dec 14 2022

AM | TEXAS A&M

Work supported by Nuclear Data FOA-2440, Rasco et al., 2022

Fundamental Symmetries Town Meeting – Chapel Hill

Summary

Why are the next few years interesting:

- ***** Increased precision of V_{ud} could confirm CKM unitarity deficit
 - Precision of V_{ud} from neutron decay is gradually catching up. Comparisons between V_{ud} from different determinations could possibly unveil new anomalies.
 - It is possible for the first time to compute quantities such as δ_{NS} and δ_{C} with rigorouslyquantified theory uncertainties
- Cutting-edge technologies opening up new opportunities for significant increase in precision for BSM searches and (sterile) neutrino searches (CRES, quantum sensors, traps, ...)

What might get accomplished during this LRP:

- Formation of a topical group (e.g. VudU, "Vud unitarity" alliance) to facilitate collaborations
- * Compute δ_{NS} with ab-initio methods for light and medium nuclei; improve δ_c and recoil-order corrections
- Experimental programs maturing to reach 0.1% and beyond, and orders of magnitude on sterile neutrinos

Poised for great results to come out of this LRP

D. Melconian

Fundamental Symmetries Town Meeting – Chapel Hill

In case I run out of time (I didn't?!?!)

- Start and end with the White Paper recommendations:
 - Experimental + theoretical alliance for Vud and CKM unitarity
 - Investing in small- and mid-scale projects
 - Establishing support for nuclear theory
 - Developing cutting-edge techniques
 - Promote diverse and inclusive environment, and better support students
- Thanks for input (apologies to all)
 - Maxime Brodeur, Drew Byron, Jason Clark, Leendert Hayen, Kyle Leach, Charlie Rasco, Matt Redshaw, Nick Scielzo, Chien Yeah Seng, Louis Varrian, and everyone on the nuclear β decay White Paper
 - ✤ DOE and NSF for support

Dec 14 2022

Office of

Science