Angular correlation measurements at ISAC: using the atomic nucleus to search for BSM physics for 20 years

Dan Melconian, Texas A&M – ISAC20, Aug 2019

Angular correlation monothy and some some some of the second seco

FILY SICS IOF 20 years

Dan Melconian, Texas A&M – ISAC20, Aug 2019

Outline

Introduction

***** How β decay probes BSM physics

The TRIUMF Neutral Atom Trap
* ^{38m}K - β-ν correlation, ν mass
* ³⁷K - B_ν, D; A_β, b_{Fierz}
* ⁹²Rb - a_{βν}, ν
energy spectrum

Mott polarimetry *T*-violation experiment
 *- ⁸Li – *R* coefficient

Summary

AM TEXAS A&M

Introduction

Goal:

- * To compliment high-energy experiments by pushing the precision frontier
- * Angular correlations: values sensitive to new physics

$$dW = dW_0 \left\{ 1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta}E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{l} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta}E_{\nu}} \right) \right. \\ \left. + c \left[\frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{3E_{\beta}E_{\nu}} - \frac{(\vec{p}_{\beta} \cdot \hat{\imath})(\vec{p}_{\nu} \cdot \hat{\imath})}{E_{\beta}E_{\nu}} \right] \left[\frac{I(I+1) - 3\langle \left(\vec{l} \cdot \hat{\imath}\right)^2 \rangle}{I(2I-1)} \right] \right. \\ \left. + \vec{\sigma} \cdot \left[N \frac{\langle \vec{l} \rangle}{I} + Q \frac{\vec{p}_{\beta}}{E_{\beta} + m_e} \left(\frac{\langle \vec{l} \rangle}{I} \cdot \frac{\vec{p}_{\nu}}{E_{\beta}} \right) + R \frac{\langle \vec{l} \rangle}{I} \times \frac{\vec{p}_{\beta}}{E_{\beta}} \right] + \cdots \right\} \right.$$

AM TEXAS A&M

Introduction

Goal:

- * To compliment high-energy experiments by pushing the precision frontier
- * Angular correlations: values sensitive to new physics

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) \right]$$

Blobal gameplan:
- Measure β -decay parameters

- Global gameplan:
 - ***** Measure β -decay parameters
 - Compare to SM predictions ₩
 - # Look for deviations \Leftrightarrow new physics
 - * Precision of $\leq 0.1\%$ needed to complement other searches (LHC) Naviliat-Cuncic and Gonzalez-Alonso, Ann Phys 525, 600 (2013), Cirigliano, Gonzalez-Alonso and Graesser, JHEP 1302, 046 (2013), Vos, Wilschut and Timmermans, RMP 87, 1483 (2015)

 $\vec{p}_{\rm recoil}$

ĀМ

TEXAS A&M

Introduction

Goal:

- ***** To compliment high-energy experiments by pushing the precision frontier
- Angular correlations: values sensitive to new physics

My oldest slide

1

TRINAT started with ^{38m}K

- # 0⁺ → 0⁺ decay
- $\ast a_{\beta\nu} = \frac{|C_V|^2 + |C_V'|^2 |C_S|^2 |C_S'|^2}{|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2}$
- ★ Atom-trapping techniques
 ⇒ textbook source of shortlived nuclei

The $\beta - \nu$ correlation experiment

Pure Fermi decay of 38m K \Rightarrow sensitive to scalar currents in the weak interaction

$$W(\theta_{\beta\nu}) = W_{\circ}(1 + a\frac{v}{c}\cos\theta_{\beta\nu})$$

March 16, 2000

My oldest slide

TRINAT started with ^{38m}K

0⁺ → 0⁺ decay

D. Melconian

- $\ast a_{\beta\nu} = \frac{|C_V|^2 + |C_V'|^2 |C_S|^2 |C_S'|^2}{|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2}$
- ★ Atom-trapping techniques
 ⇒ textbook source of shortlived nuclei

Pure Fermi decay of 38m K \Rightarrow sensitive to scalar currents in the weak interaction

 $W(\theta_{\beta\nu}) = W_{\circ}(1 + a\frac{v}{c}\cos\theta_{\beta\nu})$

The $\beta - \nu$ correlation experiment

March 16, 2000

ISAC20 August 2019

The world's best limits on scalar currents!

TEXAS A&M

ĀM

Able to place limits on heavy v as well

D. Melconian

Just in case you thought it was simple...

D. Melconian

TEXAS A&M

Polarized ³⁷K (v1): Measuring B_{ν} and D

Polarized ³⁷K (v1): Measuring B_{ν} and D

Polarized ³⁷K (v1): Measuring B_{ν} and D

ISAC20 August 2019

Polarized ³⁷K (v2): Measuring A_{β} and b_{Fierz}

ISAC20 August 2019

Very high and very precise polarization

New Journal of Physics

Precision measurement of the nuclear polarization in laser-cooled, optically pumped ³⁷K

B Fenker^{1,2,7}, J A Behr³, D Melconian^{1,2,7}, R M A Anderson³, M Anholm^{3,4}, D Ashery⁵, R S Behling^{1,6}, I Cohen⁵, I Craiciu³, J M Donohue³, C Farfan³, D Friesen³, A Gorelov³, J McNeil³, M Mehlman^{1,2}, H Norton³, K Olchanski³, S Smale³, O Thériault³, A N Vantyghem³ and C L Warner³

 $P_{1/2}$ T σ^{\pm} $old S_{1/2}$ $m_F = -2$ 0 2 $ec{F}=ec{I}+ec{J}$

TEXAS A&M

Ā M

The *β* asymmetry from $\overline{^{37}\kappa}$

• Use all information via the super-ratio: $A_{obs}(E_e) = \frac{1-S(E_e)}{1+S(E_e)}$ with

The β asymmetry from $\overline{{}^{37}\kappa}$

• Use all information via the super-ratio: $A_{obs}(E_e) = \frac{1-S(E_e)}{1+S(E_e)}$ with

Status of b_{Fierz} from $\overline{{}^{37}\text{K}}$

- Statistical uncertainty ~0.04, systs being evaluated; 2nd-class currents
- Next \tilde{A}_{β} run should reach <0.1% precision, will complement other searches for BSM physics

Ā M

TEXAS A&M

92 Rb 1st-forbidden $0^- \rightarrow 0^+$ decay

- MCP TOF + position \Rightarrow recoil kinetic energy $\Rightarrow a_{\beta\nu}$ (pseudoscalars?)
- β -telescope $\Rightarrow \beta^-$ energy too
 - $E_{\overline{\nu}} = E_0 E_{\beta} E_{\text{recoil}}$ (reactor anomaly)

Preliminary:

- * $a_{\beta\nu} = 0.322(11)(1)$ is much less than 1...
- Reconstructed anti-neutrino spectrum looks promising!

TEXAS A&M

ISAC20 August 2019

S1183-MTV : Test of time reversal symmetry using polarized unstable nuclei

Collaboration between Canada-Japan (Spokesperson : Jiro Murata, Rikkyo University, Japan)

Motivation : Searching T-Violating Transverse **Electron Polarization in polarized Li-8 beta decay** T & P violating (same as EDM, but in different system)

AM | TEXAS A&M

MTV detector (Japan)

IKIEIK

2008 Test Experiment at KEK-TRIAC

*R***~40%** with 8% pol., 10⁵pps

2011 – 2012 CDC Commissioning 2013 – 2015 Systematics Tests 2016 – 2017 Physics Production Data Production Completed with ~10⁻⁴ precision!

Physics from Run 2016-17 (preliminary)
1. Test of *R* at the highest precision.
2. First measurement of nuclear *N* correlation (transverse polarization).
3. Lorentz violation tests in weak interaction (half-life varying of pol. Li-8).

MTV Collaboration Japan : Rikkyo-U, Tohoku-U, Nagoya-U, RIKEN Canada : TRIUMF

Summary

- These experiments are hard, and take time, effort and patience
- Lead to high-impact publications
 - * ^{38m}K 1997 PRL first trapping (TISOL)
 - * ^{38m}K 2003 PRL massive neutrinos
 - ***** ^{38m}K 2005 PRL − β - ν correlation
 - * 37 K 2007 PLB ν asymmetry
 - ℁ 37K 2016 NJP nuclear polarization
 - * 37 K 2018 PRL β asymmetry
 - * ³⁷K 2019/20 (PRL) Fierz parameter
- TRIUMF is <u>uniquely suited</u> to mount these experiments
 None of this would have been possible without ISAC!

Incomplete list of (major) players

TRIUMF

- Otto Hausser, John D'Auria
- John Behr, Alexandre Gorelov, Peter Jackson, Mike Trinczek, Melissa Anholm, James McNeil, Rob Pitcairn, Matt Pearson, Phil Levy
- Texas A&M Cyclotron Institute
 - Ben Fenker, Spencer Behling
- Tel Aviv University
 - * Danny Ashery, Ofer Aviv, Iuliana Cohen
- Rikkyo University
 - # Jiro Murata

AM TEXAS A&M