

Fundamentally <u>cool</u> physics with trapped atoms and ions

Outline

- Introduction
 - * Testing the standard model via the precision frontier
 - ***** Angular correlations of β decay
- TAMUTRAP
 - Trapping ions at the Cyclotron Institute
 - Commissioning with mass measurement of ²³Na
- ³⁷K at TRIUMF
 - The TRINAT facility
 - Polarizing the cloud
 - ***** Recent measurement of A_{β}
- Future work

The standard model

• Pioneering experiments in β decay, and many other systems, lead to what we now know as the fundamental particles and forces of nature

THE STANDARD MODEL

• Quantum mechanics + special relativity \Rightarrow quantum field theory

The standard model

• Pioneering experiments in β decay, and many other systems, lead to what we now know as the fundamental particles and forces of nature

THE STANDARD MODEL

• Quantum mechanics + special relativity \Rightarrow quantum field theory

Electroweak + strong

TEXAS A&M

Ā M

The standard model

• Pioneering experiments in β decay, and many other systems, lead to what we now know as the fundamental particles and forces of nature

THE STANDARD MODEL

- Quantum mechanics + special relativity \Rightarrow quantum field theory
- Electroweak + strong
- 12 elementary particles and 4 fundamental forces...and 1 Higgs!

FEXAS A&M

Does the standard model work?

- Short answer: Yes. Stubbornly well!
 - ✓ It predicted the existence of the W^{\pm} , Z_0 , g, c, t and H
 - ✓ It is a renormalizable theory
 - ✓ GSW \rightarrow unifited weak force with electromagnetism
 - ✓ QCD explains quark confinement
- Experimentally tested in many different systems

$$a_{\mu}\equiv rac{1}{2}(g-2)$$

Theory uncertainty: 0.42 ppm Experimental uncertainty: 0.54 ppm

$$\Delta a_{\mu}(\text{expt} - \text{theory}) = (287 \pm 80) \times 10^{-11} (3.6\sigma)$$

Does the standard model work?

- Short answer: Yes. Stubbornly well!
 - \checkmark It predicted the existence of the W^{\pm} , Z_0 , g, c, t and H
 - \checkmark It is a renormalizable theory
 - \checkmark GSW \rightarrow unifited weak force with electromagnetism
 - ✓ QCD explains quark confinement
- Experimentally tested in many different systems

TEXAS A&M

Ā M

But the standard model can't be the final answer

- Dark matter: SM physics makes up less than 5% of the universe
- Baryon asymmetry: Why more matter than anti-matter?
- Neutrinos: Dirac or Majorana? Mass hierarchy?
- Parameter values: does our "ultimate" theory really need ~25 arbitrary constants? Do they change with time?
- Fermion generations: Why three families?
- Weak mixing: Is the CKM matrix unitary?
- Parity violation: Is nature really left-handed?
- SM cobbled together: Strong unified with electroweak?
- Gravity: Quantum description??

Point is: we know there *must* be physics beyond the SM

A primer on β decay

- Soon after the neutrino was hypothesized by Pauli, Fermi came up with his theory of β decay:
 - ★ A contact (4-point) interaction
 - New force is weak; Fermi's Golden Rule

 $\frac{G_F}{\sqrt{2}} \left(p_\beta E_\beta \right)$

- \ast β energy largely determined by phase space
- Purely vector (inspired by E&M)

Density of final states of the electron/positron

 (E_{β})

Density of final states available to the neutrino, with $A_0 = M - M' = E_e + E_v$ and $m_v = 0$

A primer on β decay

- Soon after the neutrino was hypothesized by Pauli, Fermi came up with his theory of β decay:
 - ★ A contact (4-point) interaction
 - New force is weak; Fermi's Golden Rule
 - \ast β energy largely determined by phase space
 - Purely vector (inspired by E&M)

ĀМ

TEXAS A&M

A primer on β decay

- Soon after the neutrino was hypothesized by Pauli, Fermi came up with his theory of β decay
- This is, of course, not correct; but to a good approximation it works very well
- In the SM, we understand it now as
 - Mediated by the massive charged W[±] bosons coupling to quarks

- ***** Extremely short-ranged: $\approx 10^{-18}$ m, or 0.1% the diameter of the proton
- * "Real" coupling is g_w ; effective one is G_F : $\frac{g_W^2}{8M_{W}^2} = \frac{G_F}{\sqrt{2}}$

Note: E&M coupling $\alpha_{E\&M} \approx \frac{1}{137}$ versus "weak" coupling $\alpha_{weak} = \frac{g_W^2}{4\pi} \approx \frac{1}{30}$!

Based on experiments, form is (V - A), even though initially looked like (S, T)

β decay and the standard model

SM Hamiltonian is

$$H_{\beta} = (\overline{\psi}_{n}\gamma_{\mu}\psi_{p}) (C_{V}\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu} + C_{V}'\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu}) - (\overline{\psi}_{n}\gamma_{\mu}\gamma_{5}\psi_{p})(C_{A}\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu})$$
where $C_{V} = C_{V}' = 1$
and $C_{A} = C_{A}' \approx 1.26$ is a renormalization since not purely leptonic

Transformation under parity?

★ What we observe is the square of an amplitude: $|M_{fi}|^2 \sim (V - A)(V - A)$

* Apply a parity operator: $\hat{P}\left\{ \left| M_{fi} \right|^{2} \right\} = \hat{P}\{VV + AA - 2VA\} = (-V)(-V) + (+A)(+A) - 2(-V)(+A)$ = VV + AA + 2VA

* Parity is <u>maximally</u> violated; only left-handed fermions couple to the W

β decay and the standard model

V

SM Hamiltonian is

$$H_{\beta} = (\overline{\psi}_{n} \gamma_{\mu} \overline{\psi}_{l} - (\overline{\psi}_{n} \gamma_{\mu} \gamma_{5} \overline{\psi}))$$
where $C_{V} = C_{V}' = 1$ and $C_{A} = C_{A}' \approx 1.26$ is a rer

- Transformation under parity?
 - What we observe is the square

* Parity is maximally violated; only left-handed fermions couple to the W

TAMU 2018

Beyond the standard model

The most general Hamiltonian that obeys Lorentz invariance is

$$\begin{aligned} H_{\beta} &= (\overline{\psi}_{n}\psi_{p})(\mathcal{C}_{S}\overline{\psi}_{e}\psi_{\nu} + \mathcal{C}_{S}'\overline{\psi}_{e}\gamma_{5}\psi_{\nu}) & \text{Scalar} + \\ &+ (\overline{\psi}_{n}\gamma_{5}\psi_{p})(\mathcal{C}_{P}\overline{\psi}_{e}\gamma_{5}\psi_{\nu} + \mathcal{C}_{P}'\overline{\psi}_{e}\psi_{\nu}) & \text{Pseudoscalar} - \\ &+ (\overline{\psi}_{n}\gamma_{\mu}\psi_{p}) (\mathcal{C}_{V}\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu} + \mathcal{C}_{V}'\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu}) & \text{Vector} - \\ &- (\overline{\psi}_{n}\gamma_{\mu}\gamma_{5}\psi_{p})(\mathcal{C}_{A}\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + \mathcal{C}_{A}'\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu}) & \text{Axial vector} + \\ &+ \frac{1}{2}(\overline{\psi}_{n}\sigma_{\lambda\mu}\psi_{p})(\mathcal{C}_{T}\overline{\psi}_{e}\sigma^{\lambda\mu}\psi_{\nu} + \mathcal{C}_{T}'\overline{\psi}_{e}\sigma^{\lambda\mu}\gamma_{5}\psi_{\nu}) & \text{Tensor} N/A \end{aligned}$$

The coupling constants, C_i , C'_i , may be complex and are not predicted by the SM

• No reason why $C_V = C'_V$ and $C_A = C'_A$ are the only non-zero ones...

⇒ 19 free parameters to be determined by experiment (10 complex couplings minus one overall phase)

TAMU 2018

Beyond the standard model

The most general Hamiltonian that obeys Lorentz invariance is

$$\begin{aligned} H_{\beta} &= (\overline{\psi}_{n}\psi_{p})(\mathcal{C}_{S}\overline{\psi}_{e}\psi_{\nu} + \mathcal{C}_{S}'\overline{\psi}_{e}\gamma_{5}\psi_{\nu}) \\ &+ (\overline{\psi}_{n}\gamma_{5}\psi_{p})(\mathcal{C}_{P}\overline{\psi}_{e}\gamma_{5}\psi_{\nu} + \mathcal{C}_{P}'\overline{\psi}_{e}\psi_{\nu}) \\ &+ (\overline{\psi}_{n}\gamma_{\mu}\psi_{p}) (\mathcal{C}_{V}\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu} + \mathcal{C}_{V}'\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu}) \\ &- (\overline{\psi}_{n}\gamma_{\mu}\gamma_{5}\psi_{p})(\mathcal{C}_{A}\overline{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + \mathcal{C}_{A}'\overline{\psi}_{e}\gamma^{\mu}\psi_{\nu}) \\ &+ \frac{1}{2}(\overline{\psi}_{n}\sigma_{\lambda\mu}\psi_{p})(\mathcal{C}_{T}\overline{\psi}_{e}\sigma^{\lambda\mu}\psi_{\nu} + \mathcal{C}_{T}'\overline{\psi}_{e}\sigma^{\lambda\mu}\gamma_{5}\psi_{\nu}) \end{aligned}$$

Scalar + Pseudoscalar – Vector – Axial vector + Tensor N/A

Right-handed bosons, or scalar/tensor leptoquarks, or...

- Profumo, Ramsey-Musolf, Tulin, Phys. Rev. D **75**, 075017 (2007)
- Vos, Wilschut, Timmermans, Rev. Mod.
 Phys. 87, 1483 (2015)
- Bhattacharya *et al.*, Phys. Rev. D **94**, 054508 (2016)

D. Melconian

TAMU 2018

parity

β decay to search for new physics

Start with (part of) the often-quoted angular distribution of the decay: (Jackson, Treiman and Wyld, Phys Rev **106** and Nucl Phys **4**, 1957)

β decay to search for new physics

Start with (part of) the often-quoted angular distribution of the decay: (Jackson, Treiman and Wyld, Phys Rev **106** and Nucl Phys **4**, 1957)

Ā M

TEXAS A&M

The precision frontier

Goal:

- * To complement high-energy experiments by pushing the precision frontier
- * Angular correlations in β decay: values sensitive to new physics

Global gameplan:

- ***** Measure the β -decay parameters
- Compare to SM predictions
- ***** Look for deviations \Leftrightarrow new physics
- * Precision of $\leq 0.1\%$ needed to complement other searches (LHC)

Naviliat-Cuncic and Gonzalez-Alonso, Ann Phys **525**, 600 (2013) Cirigliano, Gonzalez-Alonso and Graesser, JHEP **1302**, 046 (2013) Vos, Wilschut and Timmermans, RMP **87**, 1483 (2015) González-Alonso, Naviliat-Čunčić, PRC **94**, 035503 (2016) González-Alonso, Naviliat-Čunčić and Severijns, arXiv:1803.08732

The precision frontier

Goal:

Cirigliano, Gonzalez-Alonso and Graesser, JHEP **1302**, 046 (2013) Vos, Wilschut and Timmermans, RMP **87**, 1483 (2015) González-Alonso, Naviliat-Čunčić, PRC **94**, 035503 (2016) González-Alonso, Naviliat-Čunčić and Severijns, arXiv:1803.08732

The energy frontier

- CMS collaboration, Phys. Rev. D 91, 092005 (2015)
 - * Look for direct production \Rightarrow excess of events in the missing transverse energy
 - $* \sigma(pp \rightarrow e + \text{MET} + X)$ channel with $\int L = 20 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$
 - ★ No excess observed → place limits (see Gonzalez-Alonzo, arXiv:1803.08732 for EFT interpretation)

0.1% is a tall order...how to reach that precision?

Ion traps

- ✤ Well-known for mass measurements (ISOLTRAP, JYFLTRAP, LEBIT, TITAN,...)
- Heta-Decay Paul Trap @ ANL
 - β - ν correlation of ⁸Li to 1%; poised to reach 0.1% precision
- No other correlation experiments completed yet, but a number are planned:
 - TAMUTRAP @ Texas A&M (³²Ar; ²⁰Mg, ²⁴Si, ²⁸S, ³⁶Ca, ⁴⁰Ti)
 - LPCTrap @ GANIL (⁶He)
 - EIBT @ Weizmann Institute \rightarrow SARAF (⁶He to start)
 - NSLTrap @ Notre Dame (¹¹C, ¹³N, ¹⁵O, ¹⁷F)

0.1% is a tall order...how to reach that precision?

Ion traps

- ✤ Well-known for mass measurements (ISOLTRAP, JYFLTRAP, LEBIT, TITAN,...)
- Heta-Decay Paul Trap @ ANL
 - β - ν correlation of ⁸Li to 1%; poised to reach 0.1% precision
- No other correlation experiments completed yet, but a number are planned:
 - TAMUTRAP @ Texas A&M (³²Ar; ²⁰Mg, ²⁴Si, ²⁸S, ³⁶Ca, ⁴⁰Ti)
 - LPCTrap @ GANIL (⁶He)
 - EIBT @ Weizmann Institute \rightarrow SARAF (⁶He to start)
 - NSLTrap @ Notre Dame (¹¹C, ¹³N, ¹⁵O, ¹⁷F)
- Magneto-optical traps
 - * Atoms are cold and confined to a small volume
 - Isomerically selective; low backgrounds
 - * Very shallow trap, minimal volumes to scatter off

Outline

- Introduction
 - * Testing the standard model via the precision frontier
 - ***** Angular correlations of β decay
- TAMUTRAP
 - Trapping ions at the Cyclotron Institute
 - Commissioning with mass measurement of ²³Na
- ³⁷K at TRIUMF
 - The TRINAT facility
 - Polarizing the cloud
 - ***** Recent measurement of A_{β}
- Future work

T = 2 Superallowed Decays

$$dW \sim 1 + a_{\beta\nu} \left(\frac{\nu_{\beta}}{c}\right) \cos \theta_{\beta\nu}$$
$$a_{\beta\nu} = \frac{|C_{\nu}|^2 + |C_{\nu}'|^2 - |C_{s}|^2 - |C_{s}'|^2}{|C_{\nu}|^2 + |C_{\nu}'|^2 + |C_{s}'|^2 + |C_{s}'|^2} = 1?$$

T = 2 Superallowed Decays

TAMU 2018

$a_{\beta\nu}$ of T = 2 superallowed decays

- Demonstrated once in ³²Ar: $\Delta a_{\beta\nu} = 0.65\%$
- Increased sensitivity if the β is observed in coincidence
- Aim for $\leq 0.1\%$ precision utilizing Penning traps

D. Melconian

TAMU 2018

TEXAS A&M

Ā M

But why throw away useful information?

We can gain sensitivity and reduce backgrounds by using information

Utilize the technology of Penning traps to provide a backing-free source of localized radioactive ions!!

magnetic field B

 $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$

cyclotron motion

from the β

But why throw away useful information?

We can gain sensitivity and reduce backgrounds by using information

Utilize the technology of Penning traps to provide a backing-free source of localized radioactive ions!!

from the β

magnetic field B

 $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$

Measure means instead of 2nd moments

The T-REX Upgrade Project

- Re-commission the K150 for high intensity beams and/or to re-accelerate RIBs in the K500
- Light Ion Guide used for production of neutron deficient RIBs via A(p,xn)B reactions
- Heavy Ion Guide used for both neutron deficient and proton deficient RIBs (deep inelastic and nuclear fragmentation reactions)

TEXAS A&N

The original plan

Solution Use the heavy ion guide to produce the proton-rich nuclei

D. Melconian

The original plan

- Solution Use the heavy ion guide to produce the proton-rich nuclei
 - * ³He target, 10% overall efficiency, assuming K150 specs from White Paper

RIB	t _{1/2} [ms]	Projectile	Energy [MeV/u]	Target thickness [mg/cm ²]	Expected rate @ target chamber [pps]	
²⁰ Mg	90	²⁰ Ne	23-30	22.5 (<mark>66</mark>)	$68 (400) \times 10^4$	
²⁴ Si	140	²⁴ Mg	22-30	22.5 (70)	26 (160) × 10 ⁴	
²⁸ S	125	²⁸ Si	22-30	22.5 (<mark>60</mark>)	$7(40) \times 10^4$	
³² Ar	98	³² S	20-24	22.5 (<mark>42</mark>)	$5(17) \times 10^4$	
³⁶ Ca	102	³⁶ Ar	23-30	22.5 (<mark>28</mark>)	$12 (31) \times 10^4$	
⁴⁰ Ti	53	⁴⁰ Ca	23-30	22.5 (<mark>26</mark>)	$4(8) \times 10^4$	
	re-cu K1	ommissioned 50 cyclotron	productitarget	on BigSol(?) separator A ga	ortho-TOF NL-type is-catcher heavy-ion guide	

TEXAS A&M

ĀM

Issues with original plan

Ion source not performing to specs

K150 not able to go to full energy

No separator, no one working on it

"You can expect one ion every 9 or 10 seconds"

TEXAS A&M

In the meantime, we haven't been picking our noses...

D. Melconian

TAMU 2018

In the meantime, we haven't been picking our noses...

Optimizing the TAMUTRAP beamlines

D. Melconian

Optimizing the TAMUTRAP beamlines

D. Melconian

Prototype Penning trap commissioned (2016)

- Most cylindrical Penning traps have a length-to-radius ratio of l/r = 11.75
- To confine the protons from T = 2 decays, need r = 90 mm
 - * Needed a new design to make it fit in the 7T magnet

M. Mehlman et al., NIMA 712 (2013) 9

As we wait for RIB, learn to measure masses

Mass measurement of ²³Na

- Find resonant frequencies for
 ²³Na and reference ³⁹K
- Use AME value for ³⁹K, and calculate M(²³Na)
- 20 ms excitation (solid points, red curve)
 - $\Rightarrow M_{\text{diff}} = \text{calc}-\text{AME}$ $= 2.8 \pm 2.5 \text{ keV}$
 - a 0.13 ppm measurement
- ■ 100 ms (open points, blue)
 ⇒ $M_{diff} = -0.3 \pm 1.3 \text{ keV}$ a 0.06 ppm measurement

Mass measurement of ²³Na

- Find resonant frequencies for ²³Na and reference ³⁹K
- Use AME value for ³⁹K, and calculate M(²³Na)
- 20 ms excitation (solid points, red curve)
 - $\Rightarrow M_{\rm diff} = calc AME$ $= 2.8 \pm 2.5 \text{ keV}$
 - a 0.13 ppm measurement
- D0 ms (open points, blue)
 ⇒ $M_{diff} = -0.3 \pm 1.3 \text{ keV}$ a 0.06 ppm measurement

About to install the full-sized Penning trap!

D. Melconian

Outline

- Introduction
 - * Testing the standard model via the precision frontier
 - ***** Angular correlations of β decay
- TAMUTRAP
 - * Trapping ions at the Cyclotron Institute
 - ✤ Commissioning with mass measurement of ²³Na

³⁷K at TRIUMF

- The TRINAT facility
- Polarizing the cloud
- ***** Recent measurement of A_{β}
- Future work

The TRIUMF Neutral Atom Trap

D. Melconian

TAMU 2018

Isobaric analogue decay of ³⁷K

- Beautiful nucleus to test the standard model:
 - ***** Alkali atom \Rightarrow "easy" to trap with a MOT and polarize with optical pumping
 - Isobaric analogue decay
 - ⇒ theoretically clean; recoil-order corrections under control
 - Lifetime, Q-value and branches
 (*i.e.* the *Ft* value) well known
 - * Strong branch to the g.s.

 $3/2^{+}$ 1.2365(9) s ³⁷K β^+ $Q_{EC} = 6.14746(23) \text{ MeV}$ 9.7(122) $3/2^{+}$ 3938 keV 5.7811.6(13)120 $3/2^{+}$ $3602 \, \text{keV}$ 224(12)4.9621(2) $5/2^+$ 3170 keV 6.35 27(2)2.07(11)% $5/2^{+}$ $2796 \,\mathrm{keV}$ 3.79 $3/2^{-}$ $2490 \,\mathrm{keV}$ 29(4)6.88 289(15) 25(20)7.51 $7/2^{-}$ 1611 keV 1000 $1/2^+$ 42.2(75)7.391410 keV97.89(11)% 3.66 ³⁷Ar

Isobaric analogue decay of ³⁷K

- Beautiful nucleus to test the standard model:
 - ***** Alkali atom \Rightarrow "easy" to trap with a MOT and polarize with optical pumping

 $3/2^{+}$

 $3/2^{+}$

 $5/2^+$

 $5/2^+$

 $3/2^{-}$

- Isobaric analogue decay
 - ⇒ theoretically clean; recoil-order corrections under control
- Lifetime, Q-value and branches(*i.e.* the *Ft* value) well known
- * Strong branch to the g.s.
- But there are challenges...
 - **★** Can't calculate $C_A M_{GT}$ to high precision ⇒ need to measure $\rho \equiv C_A M_{GT} / C_V M_F$
 - ★ Nuclear spin 3/2 ⇒ need to polarize the atoms, and especially know how polarized they are (also alignment)

 $3/2^{+}$ 1.2365(9) s ³⁷K eta^+ $Q_{EC} = 6.14746(23) \text{ MeV}$ 3938 keV 5.7811.6(13)13 $3602 \, \text{keV}$ 224(12)4.963170 keV 27(2)6.352.07(11)% $2796 \,\mathrm{keV}$ 3.79 $2490 \,\mathrm{keV}$ 29(4)6.88 289(15) 11 keV 25(20)7.51 000 10 keV 42.2(75)7.3997.89(11)% 3.66 ³⁷Ar

The *Ft* is measured well enough (for now)

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) + \begin{array}{c} \text{alignment} \\ \text{term} \end{array} \right]$$

Correlation	SM expectation
$\beta - \nu$ correlation	$a_{\beta\nu} = 0.6648(18)$
Fierz interference	b = 0 (sensitive to scalars & tensors)
β asymmetry	$A_{\beta} = -0.5706(7)$
v asymmetry	$B_{\nu} = -0.7702(18)$
Time-violating correlation	D = 0 (sensitive to imaginary couplings)

Currently analyzing data for improving the branching ratio (which currently limits these predictions)

TEXAS A&M

ĀМ

The TRINAT lab (an older picture)

Not shown:

- Recoil MCP detector into page
- Shake-off e⁻ MCP out of page
- Hoops for electric field to collect recoil and shake-off e⁻
- * The β telescopes within the re-entrant flanges (top and bottom)

- MOTs provide a source that is:
 - **卷 Cold** (∼ 1 mK)
 - ***** Localized (~ 1 mm^3)
 - In an open, backing-free geometry

- Optical pumping:
 - Polarized light transfers ang momentum to atom
 - Nuclear and atomic spins are coupled
 - Polarize as (cold) atoms expand

Optical pumping is fast and efficient!

- No time to go into details, but basically
 - ***** Measure the rate of photions (\Leftrightarrow fluorescence) as a function of time
 - Model sublevel populations using the optical Bloch equations
 - Determine the average nuclear polarization:

ΓEXAS A&M

D. Melconian

TAMU 2018

The β asymmetry measurement

 ΔE_{β} detectors: — Double-sided Si-strip

Use **all** information via the super-ratio: $A_{obs}(E_e) = \frac{1-S(E_e)}{1+S(E_e)}$

with
$$S(E_e) = \sqrt{\frac{r_1^{\uparrow}(E_e) r_2^{\downarrow}(E_e)}{r_1^{\downarrow}(E_e) r_2^{\uparrow}(E_e)}}$$

polarization axis

³⁷K β asymmetry measurement

Sector Energy spectrum – <u>great agreement</u> with GEANT4 simulations:

³⁷K β asymmetry measurement

• Asymmetry as a function of β energy after unblinding (again, **no** background subtraction!):

(Dominant) Error budget and A_{β} result

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13 ×10 ⁻⁴
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19 ×10 ⁻⁴

(Dominant) Error budget and A_{β} result

PHYSICAL REVIEW LETTERS 120, 062502 (2018)

Precision Measurement of the β Asymmetry in Spin-Polarized ³⁷K Decay

B. Fenker,^{1,2} A. Gorelov,³ D. Melconian,^{1,2,*} J. A. Behr,³ M. Anholm,^{3,4} D. Ashery,⁵
R. S. Behling,^{1,6} I. Cohen,⁵ I. Craiciu,³ G. Gwinner,⁴ J. McNeil,^{7,3} M. Mehlman,^{1,2} K. Olchanski,³ P. D. Shidling,¹ S. Smale,³ and C. L. Warner³
¹Cyclotron Institute, Texas A&M University, 3366 TAMU, College Station, Texas 77843-3366, USA ²Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, Texas 77843-4242, USA

TOTAL SYSTEMATICS	13×10^{-4}
STATISTICS	13×10^{-4}
POLARIZATION	5×10^{-4}
TOTAL UNCERTAINTY	19×10^{-4}

$$A_{\beta}^{\text{meas}} = -0.5707(19)$$
 cf $A_{\beta}^{\text{SM}} = -0.5706(7)$ (includes recoil-order corrections, $\Delta A_{\beta} \approx -0.0028 \frac{E_{\beta}}{E_{\alpha}}$)

B.Fenker *et al*, PRL **120**, 062502 (2018)

Interpretation and future prospects

• Comparison of $V_{\rm ud}$ from: ³⁵Ar alu 0.980 n***** Mirror nuclei (including 37 K) (PDG17) 0.978 $0^+ \rightarrow 0^+$ $\left< V_{\rm ud} \right>_{\rm mirror}$ previo ₩-The neutron 0.976 ²¹Na $V^{
m nq}$ 0.974 Pure Fermi decays 0.972 ³⁷K 0.970 ¹⁹Ne (DNP16) **24**Al 0.968 20 30 0 40 10 of parent nucleus A

B.Fenker *et al*, PRL **120**, 062502 (2018)

Interpretation and future prospects

- Comparison of $V_{\rm ud}$ from:
 - ***** Mirror nuclei (including 37 K)
 - ★ The neutron
 - Pure Fermi decays
- Also other physics to probe:
 - Right-handed currents
 - ★ 2nd class currents
 - Scalar & tensor currents

D. Melconian

Future TAMUTRAP plans

- After gold-coating, we're ready to install the world's largest Penning trap
 - * Test/debug with more mass measurements
 - ***** Finalize designs of proton/ β detectors
- None of this matters as long as we can't get radioactive ions delivered to TAMUTRAP...
 - Designing a gas cell to use the light ion guide
 - Work with the accelerator group to improve K150 performance
 - * Thinking about a mass separator for the heavy ion guide
 - By early next year, trap fission products from ²⁵²Cf (?)

Future TRINAT plans

• Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents

• Improve A_{β} measurement by $3 - 5 \times$ with next run at TRIUMF

Future TRINAT plans

- Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents
- Improve A_{β} measurement by $3 5 \times$ with next run at TRIUMF
- Measure $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$
 - * Technique demonstrated in ⁸⁰Rb [Pitcairn *et al.*, PRC **79**, 015501 (2009)]
 - High statistics measurement!

AM TEXAS A&M

Future TRINAT plans

- Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents
- Improve A_{β} measurement by $3 5 \times$ with next run at TRIUMF
- Measure $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$
 - * Technique demonstrated in ⁸⁰Rb [Pitcairn *et al.*, PRC **79**, 015501 (2009)]
 - High statistics measurement!
- Measure triple-vector $(\vec{p}_e \times \vec{k}_{\gamma}) \cdot \vec{p}_1$ (*T*-violating) correlation in ^{38m}K
 - Motivated by Gardner and He, PRD
 87, 116012 (2013)

○ Effect 250x larger than for the neutron
○ Fake final state effect small: 8×10^{-4} ○ unique measurement in 1st generation
○ σ~0.02 in 1 week

TEXAS A&M

Ā M

Like Strigari said...

"And now for something completely different"

⁶He at UW – CRES technique

- New idea: use the Cyclotron Radiation Emission Spectroscopy (CRES) technique Selected for a Viewpoint in *Physics* week ending PHYSICAL REVIEW LETTERS PRL 114, 162501 (2015) 24 APRIL 2015 ဖွာ
 - Project 8 collaboration gets Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation $\frac{FWHM}{M} \approx 10^{-3}$ resolution for conversion electrons of 18 – 32 keV (Project 8 Collaboration) Frequency (GHz) Cryocooler 25.6 25.4 25.2 0.30r Signal Cryogenic 600 0.25 Counts per second per 40 eV **Amplifiers** 500 Gas Supply = Counts per 4 eV 0.20 400 Waveguide 300 0.15 200 0.10 100 Superconducting 0.05 Solenoid Magnet 30.1 0 16 20 22 26 18 24 Gas Cell

Ā M

TEXAS A&M

₩-

TAMU 2018

⁶He at UW – CRES technique

Why CRES for ⁶He?

- * Measures β energy at creation, before complicated energy-loss mechanisms
- High resolution allows debugging of systematic uncertainties
- * No background from photon or e scattering
- ✤ ⁶He in gaseous fo with the technique
- * ⁶He ion trap allows higher than any of
- Counts needed no demand on runnir

seous form works well
echnique
ap allows sensitivity
an any other proposed
eeded not a big
on running time
$$2\pi f = \frac{qB}{m + E_{\text{kin}}}$$

TEXAS A&M

Ā M

Emerging 6He little-b collaboration

W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵

¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ✤ Show detection of cyclotron radiation from ⁶He
 - Study power distribution

Emerging 6He little-*b* collaboration

W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵

¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ★ Show detection of cyclotron radiation from ⁶He
 - ★ Study power distribution
- Phase II: first measurement ($b < 10^{-3}$)
 - ✤ 6 GHz bandwidth
 - * ⁶He and ¹⁹Ne measurements

Effect	Δb		
	No trap	Ion trap	
Magnetic field uncertainties	10^{-4}	$< 10^{-4}$	
Wall effect uncertainties	10^{-3}		
RF pickup uncertainties	10^{-4}	10^{-5}	
Misidentification of events	10^{-4}	5×10^{-5}	

Ā M

Emerging 6He little-b collaboration

W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵

¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ✤ Show detection of cyclotron radiation from ⁶He
 - Study power distribution
- Phase II: first measurement ($b < 10^{-3}$)
 - ✤ 6 GHz bandwidth
 - ✤ ⁶He and ¹⁹Ne measurements
- Phase III: ultimate measurement ($b < 10^{-4}$)
 - Ion trap for no limitation from geometric effect

Effect	Δb		
	No trap	Ion trap	
Magnetic field uncertainties	10^{-4}	$< 10^{-4}$	
Wall effect uncertainties	10^{-3}		
RF pickup uncertainties	10^{-4}	10^{-5}	
Misidentification of events	10^{-4}	5×10^{-5}	

Many thanks to go around!

TEXAS A&M Ā M

B. Fenker – Programmer analyst at Tessella S. Behling – Post-doc at PNNL **M. Mehlman** – Scientist at Exponent (\rightarrow Google)

V. Kolhinen P.D. Shidling

D. McClain

M. Nasser

A. Ozmetin

B. Schroeder

J.A. Behr

- I. Craiciu
- A. Gorelov
- S. Smale
- C.L. Warner

Support provided by:

- The DOE and State of Texas
- NSERC, NRC through TRIUMF
- Israel Science Foundation

Tel Aviv ₩ University D. Ashery I. Cohen

University of British Columbia

TEXAS A&M

J. M^cNeil

ĀМ

D. Melconian

University

M. Anholm

G. Gwinner