Trapped Atoms and Ions for Tests of the Charged Electroweak Interaction

Outline

Introduction

- * Testing the standard model via the precision frontier
- ***** Angular correlations of β decay

TAMUTRAP

- * T = 2 decays to test the SM
- Current status

³⁷K at TRIUMF

- ✤ The TRINAT facility
- Polarizing the cloud
- ***** Recent measurement of A_{β}

The standard model and beyond

This is the standard model:

pure
$$V - A$$
 interaction

$$H_{\beta} = \bar{p}\gamma_{\mu}n(C_{V}\bar{e}\gamma^{\mu}\nu + C'_{V}\bar{e}\gamma^{\mu}\gamma_{5}\nu) - \bar{p}\gamma_{\mu}\gamma_{5}n(C_{A}\bar{e}\gamma^{\mu}\gamma_{5}\nu + C'_{A}\bar{e}\gamma^{\mu}\nu)$$

$$C_{V} = C'_{V} = 1$$

$$C_{A} = C'_{A} \approx 1.27$$

These are not:

Right-handed bosons, or scalar/tensor leptoquarks, or SUSY, or...

• Profumo, Ramsey-Musolf, Tulin, Phys. Rev. D **75**, 075017 (2007)

- Vos, Wilschut, Timmermans, Rev. Mod. Phys. **87**, 1483 (2015)
- Bhattacharya *et al.*, Phys. Rev. D 94, 054508 (2016)

The precision frontier

Goal:

- * To complement high-energy experiments by pushing the precision frontier
- ***** Angular correlations in β decay: values sensitive to new physics

Global gameplan:

- ***** Measure the β -decay parameters
- Compare to SM predictions
- ***** Look for deviations \Leftrightarrow new physics
- * Precision of $\leq 0.1\%$ needed to complement other searches (LHC)

Naviliat-Cuncic and Gonzalez-Alonso, Ann Phys **525**, 600 (2013) Cirigliano, Gonzalez-Alonso and Graesser, JHEP **1302**, 046 (2013) Vos, Wilschut and Timmermans, RMP **87**, 1483 (2015) González-Alonso, Naviliat-Čunčić and Severijns, arXiv:1803.08732

TEXAS A&M

Ā M

The energy frontier

- CMS collaboration, Phys. Rev. D 91, 092005 (2015)
 - * Look for direct production \Rightarrow excess of events in the missing transverse energy
 - Expected 2.0±0.3 $\sigma(pp \rightarrow e + \text{MET} + X)$ channel with $\int L = 20 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$
 - ★ No excess observed → place limits (see Gonzalez-Alonzo, arXiv:1803.08732 for EFT interpretation)

0.1% is a tall order...how to reach that precision?

Ion traps

- Can trap any ion; well-known for mass measurements (ISOLTRAP, JYFLTRAP, LEBIT, TITAN,...)
- Beta-Decay Paul Trap @ ANL
 - β - ν correlation of ⁸Li to 1%; poised to reach 0.1% precision
- * No other correlation experiments completed yet, but a number planned:
 - TAMUTRAP @ Texas A&M (³²Ar; ²⁰Mg, ²⁴Si, ²⁸S, ³⁶Ca, ⁴⁰Ti)
 - LPCTrap @ GANIL (⁶He)
 - EIBT @ Weizmann Institute → SARAF (⁶He to start)
 - NSLTrap @ Notre Dame (¹¹C, ¹³N, ¹⁵O, ¹⁷F)
- Magneto-optical traps
 - Atoms are cold and confined to a small volume
 - TRINAT @ TRIUMF (K isotopes)
 - W/ANL (you know...!)
 - NeAT @ SARAF (Ne isotopes)

How does β decay test the SM?

Begin by looking at the basic decay rate

Expand to the often-quoted angular distribution of the decay (Jackson, Treiman and Wyld, Phys Rev **106** and Nucl Phys **4**, 1957)

CENPA July 2018

 Expand to the often-quoted angular distribution of the decay (Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

(see González-Alonso and Naviliat-Čunčić, PRC 94, 0.35503 (2016))

TEXAS A&M

Ā M

How to achieve our goal?

- Perform a β decay experiment on short-lived isotopes
- Make a precision measurement of the angular correlation parameters
- Compare the SM predictions to observations
- Look for deviations as an indication of new physics

Outline

- Introduction
 - * Testing the standard model via the precision frontier
 - ***** Angular correlations of β decay

TAMUTRAP

- * T = 2 decays to test the SM
- Current status

³⁷K at TRIUMF

- ✤ The TRINAT facility
- ✤ Polarizing the cloud
- ***** Recent measurement of A_{β}

T = 2 Superallowed decays

β - ν correlation – A good idea...going back 20 yrs

VOLUME 83, NUMBER 7

PHYSICAL REVIEW LETTERS

16 August 1999

Positron-Neutrino Correlation in the $0^+ \rightarrow 0^+$ Decay of ³²Ar

E. G. Adelberger,¹ C. Ortiz,² A. García,² H. E. Swanson,¹ M. Beck,¹ O. Tengblad,³ M. J. G. Borge,³ I. Martel,⁴ H. Bichsel,¹ and the ISOLDE Collaboration⁴ ¹Department of Physics, University of Washington, Seattle, Washington 98195-1560 ²Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 ³Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain ⁴EP Division, CERN, Geneva, Switzerland CH-1211 (Received 24 February 1999)

 $p = \frac{0^+, T}{\beta^+}$

 $\begin{array}{c} 0^+, T = 2 \\ + \end{array}$ n the $0^+ \rightarrow 0^+ \beta$ decay of ³²Ar was measured at ISOLDE by the shape of the narrow proton group following the superallowed the standard model prediction. For vanishing Fierz interference we which yields improved constraints on scalar weak interactions.

β - ν correlation – A good idea...going back 20 yrs

TEXAS A&M

Ā M

But why throw away useful information?

We can gain sensitivity and reduce backgrounds by using information

Utilize the technology of Penning traps to provide a backing-free source of localized radioactive ions!!

cvclotron motion

magnetic field B

 $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$

from the β

D. Melconian

CENPA July 2018

But why throw away useful information?

We can gain sensitivity and reduce backgrounds by using information

Utilize the technology of Penning traps to provide a backing-free source of localized radioactive ions!!

D. Melconian

from the β

magnetic field B

 $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$

Measure means instead of 2nd moments

CENPA July 2018

The T-REX Upgrade Project

- Re-commission the K150 for high intensity beams and/or to re-accelerate RIBs in the K500
- Light Ion Guide used for production of neutron deficient RIBs via A(p,xn)B reactions
- Heavy Ion Guide used for both neutron deficient and proton deficient RIBs (deep inelastic and nuclear fragmentation reactions)

TEXAS A&N

The T-REX Upgrade Project

CENPA July 2018

The original plan

Solution Use the heavy ion guide to produce the proton-rich nuclei

D. Melconian

CENPA July 2018

The original plan

Solution Use the heavy ion guide to produce the proton-rich nuclei

* ³He target, 10% overall efficiency, assuming K150 specs from White Paper

	RIB	t _{1/2} [ms]	Projectile	Energy [MeV/u]	Target thickness [mg/cm ²]	Expected rate @ target chamber [pps]	
	²⁰ Mg	90	²⁰ Ne	23-30	22.5 (<mark>66</mark>)	$68 (400) \times 10^4$	
	²⁴ Si	140	²⁴ Mg	22-30	22.5 (<mark>70</mark>)	$26(160) \times 10^4$	
	²⁸ S	125	²⁸ Si	22-30	22.5 (60)	$7(40) \times 10^4$	-
	³² Ar	98	³² S	20-24	22.5 (<mark>42</mark>)	$5(17) \times 10^4$	
	³⁶ Ca	102	³⁶ Ar	23-30	22.5 (<mark>28</mark>)	$12(31) \times 10^4$	
	⁴⁰ Ti	53	⁴⁰ Ca	23-30	22.5 (<mark>26</mark>)	$4(8) \times 10^4$	
			ommissioned	producti target	on BigSol(?) separator ga	ortho-TOF ML-type is-catcher heavy-ion guide	
X		K1	50 cyclotron				

TEXAS A&M

Ā M

The Heavy Ion Guide

- Deep-inelastic and fragmentation reactions, with BigSol as a separator
- Stopped in an ANL-type gas-catcher; able to transport to CB-ECR or TAMUTRAP with a multi-RFQ switchyard

The Heavy Ion Guide

- Deep-inelastic and fragmentation reactions, with BigSol as a separator.
- Stopped in an ANL-type gas-ca TAMUTRAP with a multi-RFQ s

D. Melconian

The Heavy Ion Guide gas catcher

- Designed and built in close collaboration with G. Savard (ANL)
- In a vacuum box to avoid condensation from cooling lines

Transporting the stopped RIBs

Gas flow and rf funnel guide RIB through multi-RFQ system

Issues with original plan

Ion source not performing to specs

K150 not able to go to full energy

No separator, no one working on it

"You can expect one ion every 9 or 10 seconds"

TEXAS A&M

The Light Ion Guide (farther along)

bean

 130 mbar He gas, RIB extracted with differential pumping system and transported to the 14.5GHz CB-ECR

TEXAS A&M

ĀМ

The Light Ion Guide

 130 mbar He gas, RIB extracted with differential pumping system and transported to the 14.5GHz CB-ECR

RF-only sextupole

The Light Ion Guide

90° analyzing magnet to transport highly charged (e.g. 12⁺ or higher ⁶⁴Ga) for injection into the K500

TEXAS A&M

ĀM

Latest plan: try using the LIG for TAMUTRAP

- Same reaction cross-sections, lighter is better for the K150
- New gas cell. Mass separation? (In)compatible with HIG?

In the meantime, we haven't been picking our noses...

D. Melconian

CENPA July 2018

Optimizing the TAMUTRAP beamlines

The RFQ cooler/buncher (v2)

CENPA July 2018

Prototype Penning trap commissioned

- Most cylindrical Penning traps have a length-to-radius ratio of l/r = 11.75
- To confine the protons from T = 2 decays, need r = 90 mm
 - Needed a new design to make it fit in the 7T magnet — — →

7T magnet

$$i = 3.72$$

M. Mehlman *et al.*
NIMA 712 (2013) 9

M. Mehlman

As we wait for RIB, learn to measure masses

CENPA July 2018

ΓΕΧΑЅ Α&Μ

Mass measurement of ²³Na

- Find resonant frequencies for ²³Na and ³⁹K
- Use AME value for ³⁹K, and calculate M(²³Na)
- 20 ms excitation (solid points, red curve)
 - $\Rightarrow M_{\text{diff}} = \text{calc}-\text{AME} \\= 2.8 \pm 2.5 \text{ keV}$
 - a 0.13 ppm measurement
- ■ 100 ms (open points, blue)
 ⇒ $M_{diff} = -0.3 \pm 1.3 \text{ keV}$ a 0.06 ppm measurement

About to install the full Penning trap

180 mm in diameter	Nuclide	Larmour radus (mm)		
	²⁰ Mg	42.7		
	²⁴ Si	40.8		
	²⁸ S	39.7		
	³² Ar	37.8	- he is	
	³⁶ Ca	33.0		
	⁴⁰ Ti	39.9		
	⁴⁸ Fe	22.9		
Beam energy 140 eV	Penning ti 180 mm diar	rap neter	traction section	
D. Melconian		CENPA July 20 ²	18	

Outline

- Introduction
 - * Testing the standard model via the precision frontier
 - ***** Angular correlations of β decay
- TAMUTRAP
 - * T = 2 decays to test the SM
 - Current status
- ³⁷K at TRIUMF
 - ✤ The TRINAT facility
 - Polarizing the cloud
 - ***** Recent measurement of A_{β}

Difficulty with MOTs: not all atoms can be trapped

1 IA IA I Hydrogen IA 2A	-	TH	EF	PER		DI	C 1	A	BLE		13 ША ЗА	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	18 VIIIA 8A 2 Hee Helium 4.003
3 4 Bee Beryllium 9.012		0	F٦	THE	ΞE	LE	ME	ΝΤ	S		5 B Boron 10.811	6 Carbon 12.011	7 Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	10 Neon 20180
11 12 12 Na Sodium 22.990 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VIII — 8	10	11 IB 1B	12 IIB 2B	13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 Sulfur 32.066	17 Chlorine 35.453	18 Argon 39.948
19 20 K Ca Potassium 39.098 double do	21 Scandium 44.956	22 Ti Titanium 47,88	23 Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54,938	Fe Iron 55.933	27 Cobalt 58.933	28 Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.39	Gallium 69.732	32 Ge Germanium 72.61	Arsenic 74.922	Selenium 78.972	35 Br Bromine 79.904	36 Kr Krypton 84.80
37 Rb Rubidium 84.68 38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Niobium 92,906	42 Mo Molybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.71	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 I Iodine 126.904	54 Xeon 131.29
55 56 Ba Cesium 132.905 137.327	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhenium 186.207	76 Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196,967	80 Hg Mercury 200.59	81 Thallium 204.383	82 Pb Lead 207.2	83 Bismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 88 Ra Francium 223.020 Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	112 Copernicium [277]	113 Uuut Ununtrium unknown	114 Fl Flerovium [289]	115 Uup Ununpentium unknown	116 LV Livermorium [298]	117 Uuuseptium unknown	118 Uuuo Ununoctium unknown
Lantha Serie	s 57	58 La Cer 140	ium Prasec 115	Pr dymium 0.908	61 Id P ymium 4.24	ethium 913	63 E E E E E E E E E E E E E E E E E E E	EU ppium 1.966 64 Gado 1.9	65 65 T Terth 158	bium 925 66 Dyspr 163	67 by rosium 250 67 Holi 164	68 10 mium 4.930	69 Er Thu blum 67.26 161	70 1100 13934 70 70 70 70 70 70 70 70 70 70	71 b erbium 73.04 1	LU tetium 74.967
Actin Serie	ide es Act 22	90 AC tinium 77.028	91 h F rium Prota 23	Pa Urai Loge 238	93 J N nium Nept 233	1p 94 unium Plute 24	95 Pu A onium Ame 24	micium Cu 24	97 m B rium Berki 7.070	98 k califo califo 251	99 Cf Einst LOBO [2	ES F einium Fer 25	101 mium 7.095 Mend	102 1d elevium 58.1	103 JO belium 103	L r rencium [262]
		Alkali Metal	Alkalin Earth	e Trans Me	sition etal	Basic Metal	Semimetal	Nonmeta	Haloge	en No G	oble ias	anthanide	Actinide			

CENPA July 2018

Difficulty with MOTs: not all atoms can be trapped

CENPA July 2018

The TRIUMF Neutral Atom Trap

D. Melconian

Isobaric analogue decay of ³⁷K

- Beautiful nucleus to test the standard model:
 - **★** Alkali atom \Rightarrow "easy" to trap with a MOT and polarize with optical pumping

 $3/2^{+}$

 $3/2^{+}$

 $5/2^+$

 $5/2^+$

 $3/2^{-}$

- Isobaric analogue decay
 - ⇒ theoretically clean; recoil-order corrections under control
- Lifetime, Q-value and branches(*i.e.* the *Ft* value) well known
- * Strong branch to the g.s.
- But there are challenges...
 - **★** Can't calculate $C_A M_{GT}$ to high precision ⇒ need to measure $\rho \equiv C_A M_{GT} / C_V M_F$
 - ★ Nuclear spin 3/2 ⇒ need to polarize the atoms, and especially know how polarized they are (also alignment)

 $3/2^{+}$ 1.2365(9) s ³⁷K eta^+ $Q_{EC} = 6.14746(23) \text{ MeV}$ 3938 keV 11.6(13)5.7813 $3602 \, \text{keV}$ 224(12)4.963170 keV 27(2)6.352.07(11)% $2796 \,\mathrm{keV}$ 3.79 $2490 \,\mathrm{keV}$ 29(4)6.88 289(15) 11 keV 25(20)7.51 000 10 keV 42.2(75)7.3997.89(11)% 3.66 ³⁷Ar

The *Ft* is measured well enough (for now)

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) + \begin{array}{c} \text{alignment} \\ \text{term} \end{array} \right]$$

Correlation	SM expectation
$\beta - \nu$ correlation	$a_{\beta\nu} = 0.6648(18)$
Fierz interference	b = 0 (sensitive to scalars & tensors)
β asymmetry	$A_{\beta} = -0.5706(7)$
v asymmetry	$B_{\nu} = -0.7702(18)$
Time-violating correlation	D = 0 (sensitive to imaginary couplings)

----> Data is in hand for improved branching ratio (currently limits predictions)

TEXAS A&M

Ā M

The TRINAT lab (an older picture)

Not shown:

- Recoil MCP detector into page
- Shake-off e⁻ MCP out of page
- Hoops for electric field to collect recoil and shake-off e⁻
- * The β telescopes within the re-entrant flanges (top and bottom)

- MOTs provide a source that is:
 - **卷 Cold** (∼ 1 mK)
 - ***** Localized (~ 1 mm^3)
 - In an open, backing-free geometry

- Optical pumping:
 - Polarized light transfers ang momentum to atom
 - Nuclear and atomic spins are coupled
 - Polarize as (cold) atoms expand

D. Melconian

D. Melconian

CENPA July 2018

Optical pumping is fast and efficient!

- No time to go into details, but basically
 - * Measure the rate of photions (\Leftrightarrow fluorescence) as a function of time
 - Model sublevel populations using the optical Bloch equations

The β asymmetry measurement

 ΔE_{β} detectors: — Double-sided Si-strip

Use **all** information via the super-ratio: $A_{obs}(E_e) = \frac{1-S(E_e)}{1-S(E_e)}$

with
$$S(E_e) = \sqrt{\frac{r_1^{\uparrow}(E_e) r_2^{\downarrow}(E_e)}{r_1^{\downarrow}(E_e) r_2^{\uparrow}(E_e)}}$$

polarization axis

³⁷K β asymmetry measurement

Sector Energy spectrum – <u>great agreement</u> with GEANT4 simulations:

³⁷K β asymmetry measurement

• Asymmetry as a function of β energy after unblinding (again, **no** background subtraction!):

(Dominant) Error budget

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13×10^{-4}
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19×10^{-4}

TEXAS A&M

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13×10^{-4}
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19×10^{-4}

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13×10^{-4}
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19×10^{-4}
-0.5707(19) cf A_{β}^{SM} =	= -0.570	6(7) (includes rec

B.Fenker *et al*, PRL **120**, 062502 (2018)

ß

meas

Interpretation and future prospects

• Comparison of $V_{\rm ud}$ from: ³⁵Ar alu 0.980 n***** Mirror nuclei (including 37 K) (PDG17) 0.978 $0^+ \rightarrow 0^+$ $\left< V_{\rm ud} \right>_{\rm mirror}$ previo The neutron ₩-0.976 ²¹Na $V_{
m nd}$ 0.974 Pure Fermi decays 0.972 ³⁷K 0.970 ¹⁹Ne (DNP16) ²⁴Al 0.968 20 30 0 40 10 of parent nucleus A

B.Fenker *et al*, PRL **120**, 062502 (2018)

D. Melconian

Interpretation and future prospects

- Comparison of $V_{\rm ud}$ from:
 - ***** Mirror nuclei (including 37 K)
 - ★ The neutron
 - Pure Fermi decays
- Also other physics to probe:
 - Right-handed currents
 - ★ 2nd class currents
 - Scalar & tensor currents

D. Melconian

Future plans

• Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents

• Improve A_{β} measurement by $3-5 \times$

PRELIMINARY

Collaborators and thanks

- Ion and atom traps are helping pave the way for the precision frontier
- TAMUTRAP: no radioactive ions yet, but facility is fully commissioned
- **TRINAT:** recent A_{β} result demonstrates ability; future is bright!

CENPA July 2018

Ā M