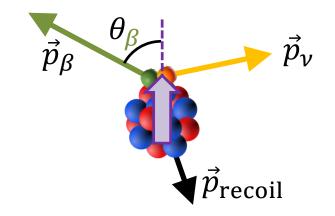
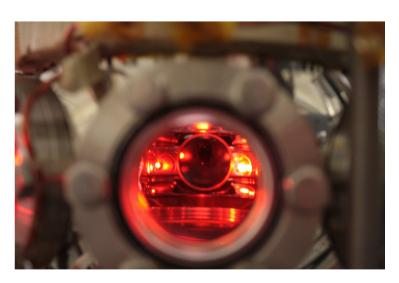
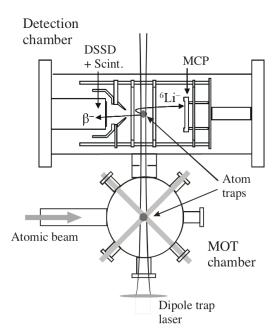
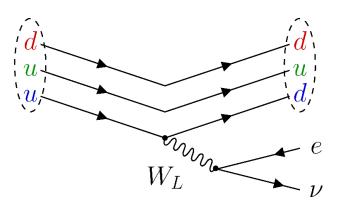
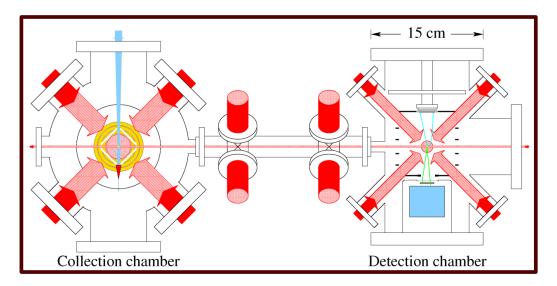

β decay asymmetry measurements with trapped atoms

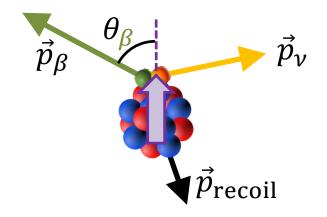


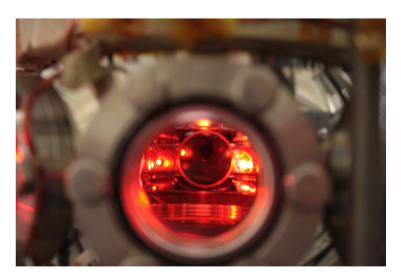


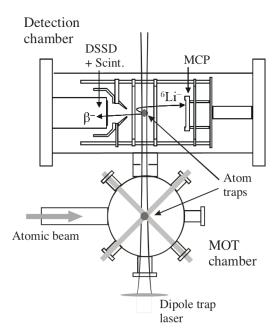



Dan Melconian – CIPANP 2018

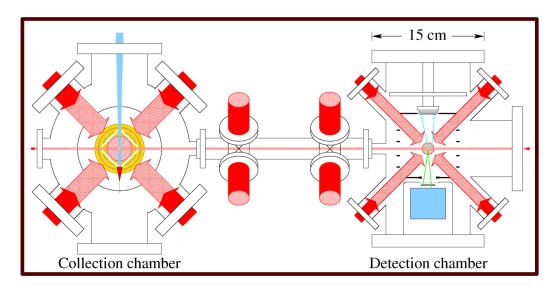

β decay asymmetry measurements with trapped atoms

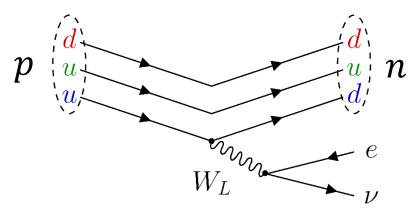







Dan Melconian – CIPANP 2018


ecisio^β decay asymmetry measurements with trapped atoms

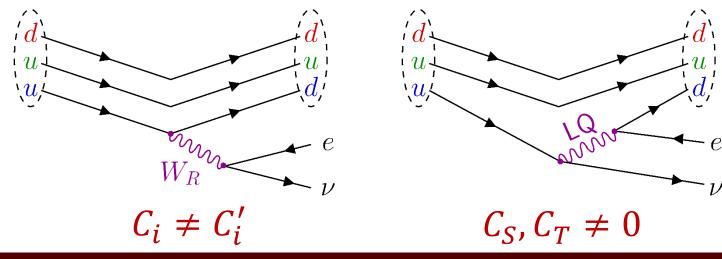


Dan Melconian – CIPANP 2018

The standard model and beyond

This is the standard model:

pure
$$V - A$$
 interaction


$$H_{\beta} = \bar{p}\gamma_{\mu}n(C_{V}\bar{e}\gamma^{\mu}\nu + C_{V}'\bar{e}\gamma^{\mu}\gamma_{5}\nu) - \bar{p}\gamma_{\mu}\gamma_{5}n(C_{A}\bar{e}\gamma^{\mu}\gamma_{5}\nu + C_{A}'\bar{e}\gamma^{\mu}\nu)$$

$$C_{V} = C_{V}' = 1$$

$$C_{A} = C_{A}' \approx 1.27$$

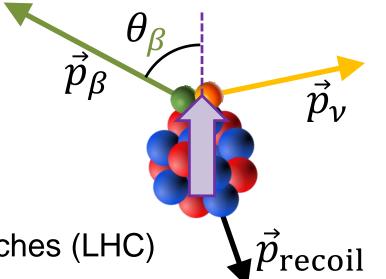
These are not:

Right-handed bosons, or scalar/tensor leptoquarks, or SUSY, or...

- Profumo, Ramsey-Musolf, Tulin, Phys. Rev. D **75**, 075017 (2007)
- Vos, Wilschut, Timmermans, Rev. Mod. Phys. 87, 1483 (2015)
- Bhattacharya *et al.*, Phys. Rev. D 94, 054508 (2016)

The precision frontier

Goal:

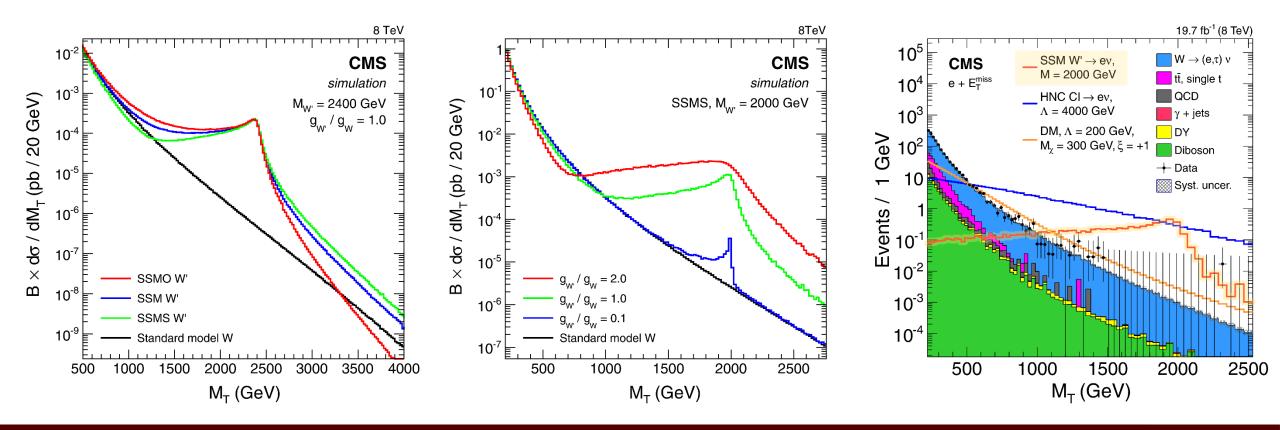

- * To complement high-energy experiments by pushing the precision frontier
- ***** Angular correlations in β decay: values sensitive to new physics

(Hopefully you saw the nice talk by González-Alonso this morning)

Global gameplan:

- ***** Measure the β -decay parameters
- Compare to SM predictions
- ***** Look for deviations \Leftrightarrow new physics
- Precision of < 0.1% needed to complement other searches (LHC)</p>

Naviliat-Cuncic and Gonzalez-Alonso, Ann Phys **525**, 600 (2013) Cirigliano, Gonzalez-Alonso and Graesser, JHEP **1302**, 046 (2013) Vos, Wilschut and Timmermans, RMP **87**, 1483 (2015) González-Alonso, Naviliat-Čunčić and Severijns, arXiv:1803.08732

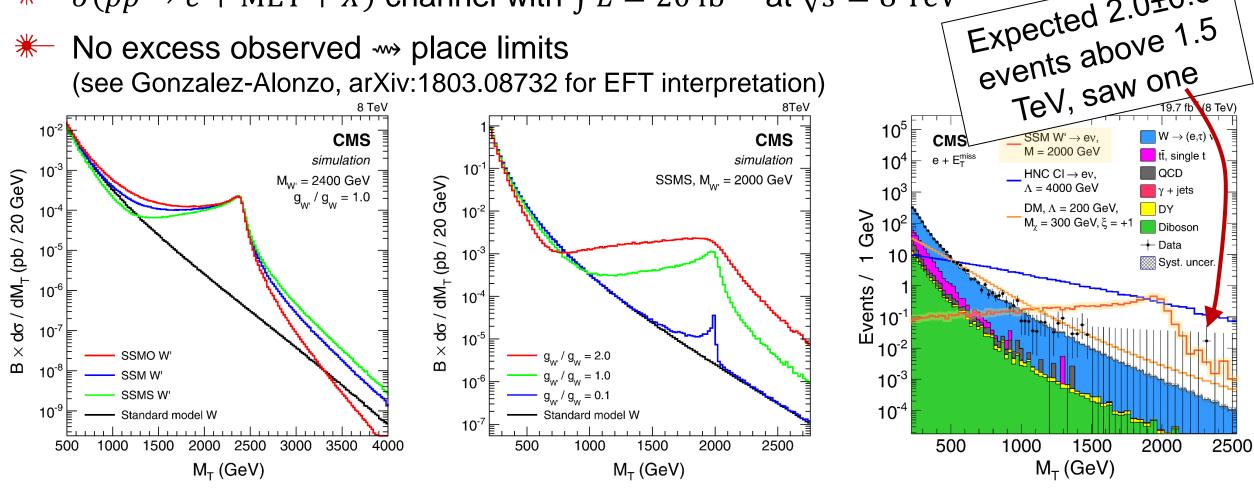


TEXAS A&M

Ā M

The energy frontier

- CMS collaboration, Phys. Rev. D 91, 092005 (2015)
 - * Look for direct production \Rightarrow excess of events in the missing transverse energy
 - # σ(*pp* → *e* + MET + *X*) channel with $\int L = 20$ fb⁻¹ at $\sqrt{s} = 8$ TeV



TEXAS A&M

ĀM

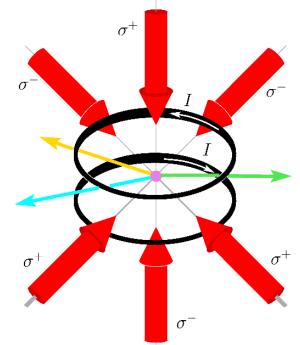
The energy frontier

- CMS collaboration, Phys. Rev. D 91, 092005 (2015)
 - * Look for direct production \Rightarrow excess of events in the missing transverse energy
 - Expected 2.0±0.3 $\sigma(pp \rightarrow e + \text{MET} + X)$ channel with $\int L = 20 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$
 - ★ No excess observed → place limits (see Gonzalez-Alonzo, arXiv:1803.08732 for EFT interpretation)

0.1% is a tall order...how to reach that precision?

Ion traps

D. Melconian

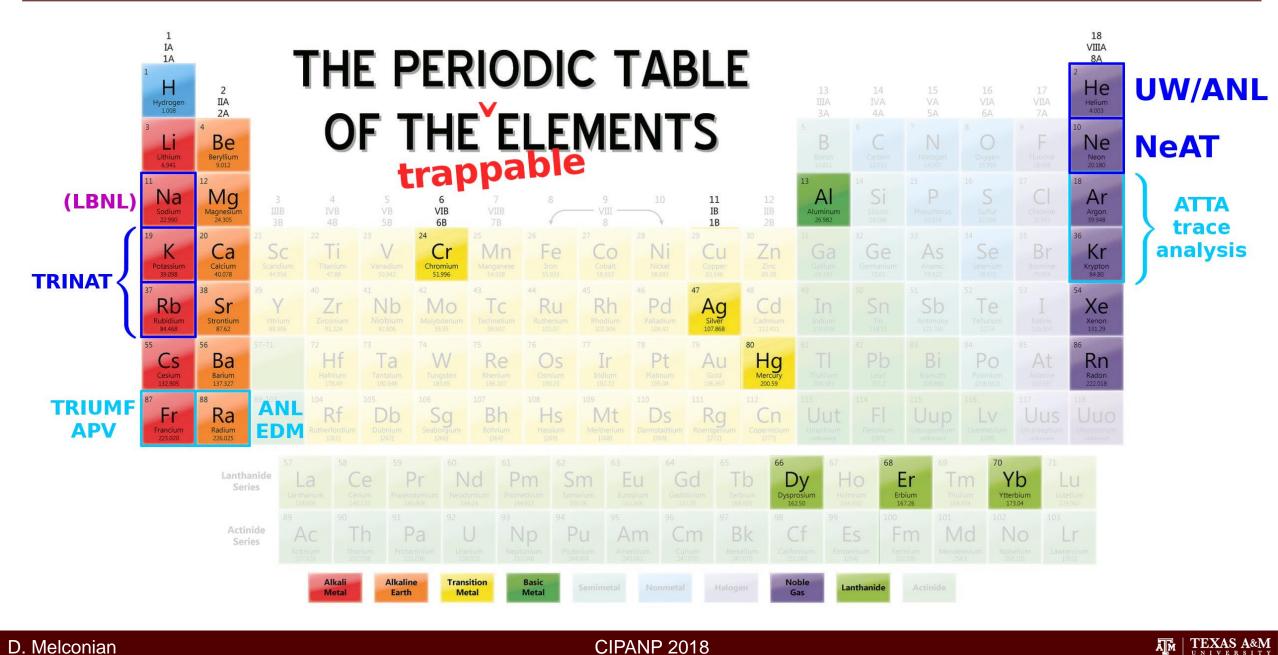

- ✤ Can trap any ion
- ✤ Well-known for mass measurements (ISOLTRAP, JYFLTRAP, LEBIT, TITAN,...)

CIPANP 2018

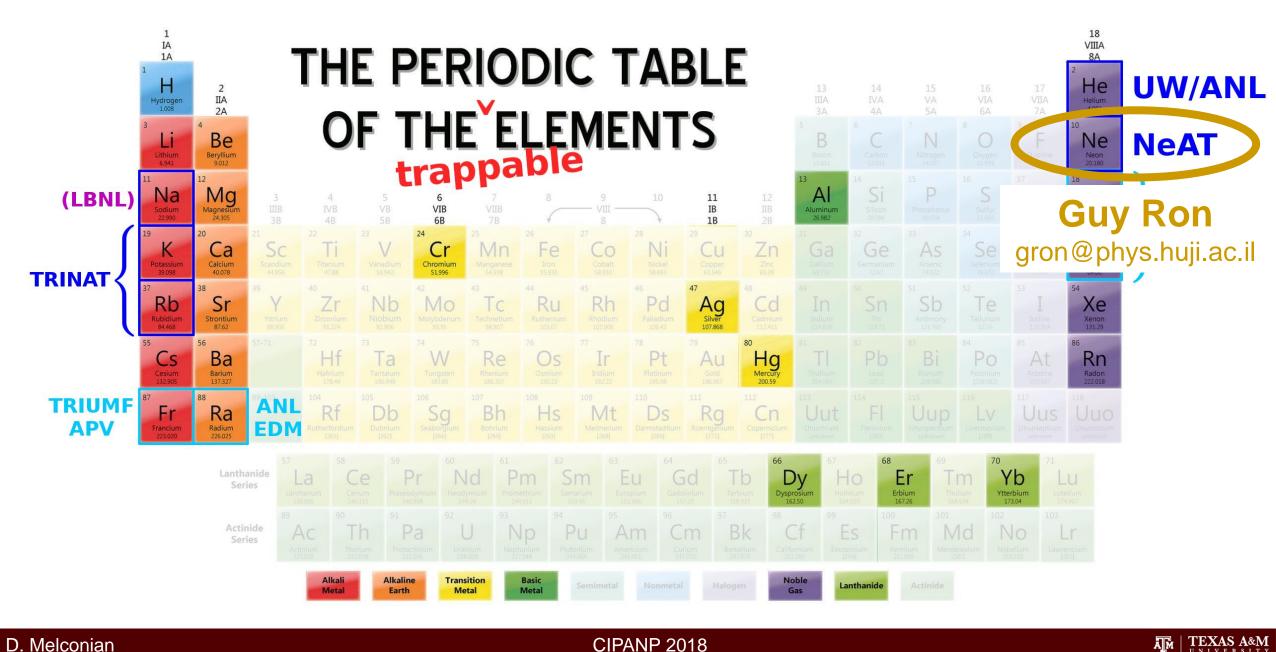
- ✤ Beta-Decay Paul Trap @ ANL
 - β - ν correlation of ⁸Li to 1%; poised to reach 0.1% precision
- * No other correlation experiments completed yet, but a number are planned:
 - TAMUTRAP @ Texas A&M (³²Ar; ²⁰Mg, ²⁴Si, ²⁸S, ³⁶Ca, ⁴⁰Ti)
 - LPCTrap @ GANIL (⁶He)
 - EIBT @ Weizmann Institute \rightarrow SARAF (⁶He to start)
 - NSLTrap @ Notre Dame (¹¹C, ¹³N, ¹⁵O, ¹⁷F)

Magneto-optical traps

- * Atoms are cold and confined to a small volume
- Isomerically selective; low backgrounds
- Wery shallow trap, minimal volumes to scatter off


TEXAS A&M

Nag Socium Magnesum 23900 3 Magnesum 24.00 3 IIB 3B 4 NB 5 VB 6 VB 7 VIB 6B 8 VIB 7B 9 VIB 7B 10 11 B 12 IB B 12 IB B 19 20 21 22 23 24 25 26 27 28 29 30 2 K Potassium 39.098 O Calcium 40.078 Sc Scandium 44.956 Titanium 47.88 V Vanadium 50.942 CCr Sciandium 50.942 Min Si.996 Fee S4.388 CO Cobalt 55.933 Nickel S8.933 29 O Coper 63.546 Zirc 63.546 Zirc 55.39 37 38 39 40 41 42 43 44 45 46 47 48 Coper 63.546 Cod Silver Cod Silver Cod Silver Silver 107.00	Boron 10811 14 Aluminum 26.982 32 Gallium 6 Germani	11 14007 15 16 P Phosphorus 30.974 33 34	Oxygen 15:999F Fluorine 18:998Ne Neon 20:1801718Ar Argon 39:4885536					
22990 24.305 3B 4B 5B 6B 7B 8 1B 2B 19 20 21 22 23 24 25 26 27 28 29 30	26.982 28.086 31 Ga Ge	186 <u>30.974</u> 33 34	32.066 35.453 39.948 35 36					
Rb Rubidjum 84.468Sr Sr 87.62Y Trium 88.906Zr Zr 91.224Nb No 91.224Mo Molybdenum 95.95Tc Technetium 98.907Ru Ru Nicholium 101.07Rd Pd Rhodium 101.07Ag Pd Ag 102.906Ag Cd Cadmium 112.411555657-717273747576777879808080	69.732 72.61 49 50	inium Arsenic S	Se Br Bromine Krypton 84.80					
Cesium Barium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury	In Indium 114818 Sn Tin 11871 82 TI Thallium Thallium	n Sb Antimony Tr 121760 83 Bi 84	I Xe Idline Idline 125,004 131.29 85 86 PO At Astatine Radon					
132.905 137.327 178.49 180.948 188.85 186.207 190.23 192.22 195.08 196.967 200.59' 87 88 89-103 104 105 106 107 108 109 110 111 112 12 15 16 107 108 109 100 111 112 12 16 107 108 109 100 111 112 12 16 107 108 109 100 111 112 12 16 107 108 109 100 111 112 12 16 107 108 109 100 111 112 12 16 107 108 109 100 111 112 12	204.383 207.2 L13 Ununtrium unknown HIA Fleroviu [289]	115 Uunpentium 9] Ununpentium unknown	LV ermorium [258] Ununseptium unknown Uluunoctium unknown					
S7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanid Series Lanthanum Lanthanum 13006 Ceri Masobi Propositivi Masobi Propositi Masobi Propositivi Masobi								



1 IA I Hydrogen 1.008	2 IIA 2A	-	100 100 100		PER		The second secon					13 ША ЗА	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	18 VIIIA 8A 2 Helium 4.003
3 4 Li Lithium 6,941	Be Beryllium 9.012		0		[HE rap		LE ble	ME	NI	S		5 Boron 10811	6 Carbon 12.011	7 Nitrogen 14007	8 Oxygen 15.999	9 Fluorine 18.998	10 Neon 20.180
11 12 Na Sodium 22.990 N	Mg Magnesium 24.305	3 111B 3B	4 IVB 4B	5 VB 58	6 VIB 6B	7 VIIB 7B	8	9 	10	11 IB 1B	12 IIB 2B	13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30974	16 Sulfur 32.066	17 Chlorine 35453	18 Argon 39.948
19 20 K Potassium 39.098	Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47,88	23 Vanadium 50.942	24 Chromium 51.996	25 Mn Manganese 54.938	Fe Fe Iron 55.933	27 Co Cobalt 58.933	28 Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.39	31 Gallium 69.732	32 Germanium 7261	33 Asenic 74922	34 Selenium 78.972	Bromine	36 Krypton 84.80
37 38 Rb Rubidium 84.468	Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91224	41 Niobium 92,906	42 Mo Molybdenum 95.95	43 TC Technetium 98.907	44 Ru Ruthenium 10107	45 Rh Rhodium 102,906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cadmium 112.411	49 In Indium 114818	50 Sn 11871	Sb Antimony 121.760	52 Te Tellurium 127 6	53 I Iodine 125 504	54 Xe Xenon 131.29
55 56 Cesium 132.905	Ba Barium 137,327		72 Hf Hafnium 178.49	73 Tantalum 180.948	74 Tungsten	75 Re Rhenium 185 207	76 Os Osmium 190.23	77 Ir Iridium	78 Platinum 195.08	79 Au Gold 196.967	80 Hg Mercury 200.59	81 Thallium 204.383	82 Pb Lead	83 Bismuth	84 Polonium (208.962)	85 At Astatine	86 Rn Radon 222.018
87 88 Francium 223.020	Ra Radium 226.025		104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [256]	107 Bh Bohrium (264)	108 Hs Hassium [269]	109 Mt Meitnerium [268]	110 DS Darmstadtium [269]	111 Rg Roentgenium	112 Cn Copernicium	113 Uut Ununtrium unknown	Flerovium [289]	115 Uup Ununpentium unknown		117 Uus Ununseptium unknown	118 Uuo Ununoctium unknown
	Lantha Serie		La (59 Ce Prase	Pr 60 Neod	d Prome	m S athium Sam	m Euro	Eu Gado	65 Gd T	b C	by rosium Hol		Er ⁶⁹ Ti		'b Lut	.U
	Actin Serie		10 90 10 10 90 10 10 10 10 10 10 10 10 10 10 10 10 10	40.115 1 91 Th F sz.038 2	40.908 14 92 Da U actinium 11.036 238	424 144 93 J N nium Neptu 237	913 15 94 10 10 10 10 10 10 10 10 10 10 10 10 10	2036 15 95 PU A 4.064 24	1.966 15 96 .m C anicium 3.061 24	7725 15 97 m E rium Berl 7,070 24	8925 16 98 8k kelium 77.070 251	250 16 99 Cf E 200 Einst 1000 Einst	100	67.26 168 101 mium 27.095 Mende 25	102	73.04 177 103 JO L pelium Lawre 5101 177	/ encium 2621
			Alkali Metal	Alkali Eart			Basic Metal		Nonmeta			bble ias	anthanide				

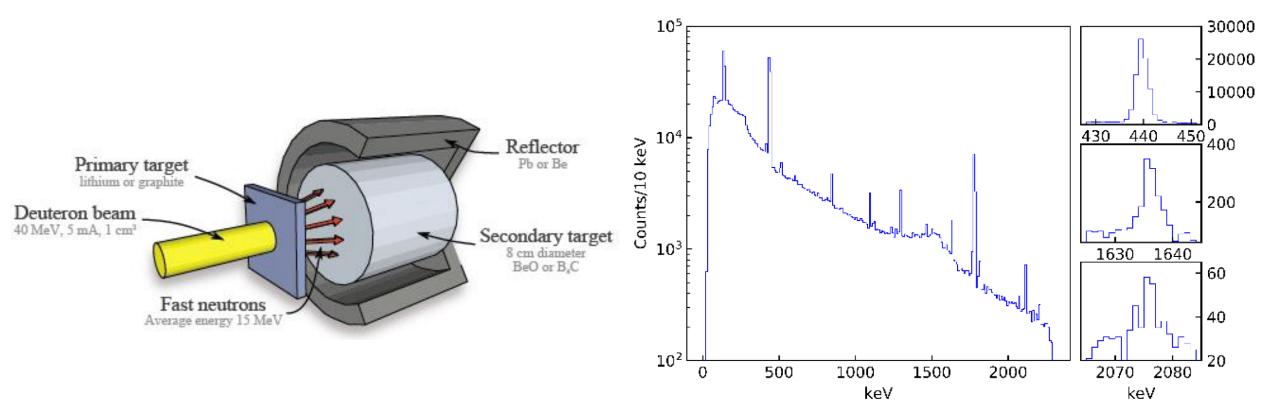
D. Melconian

Neon isotopes to be studied, and why

¹⁸Ne

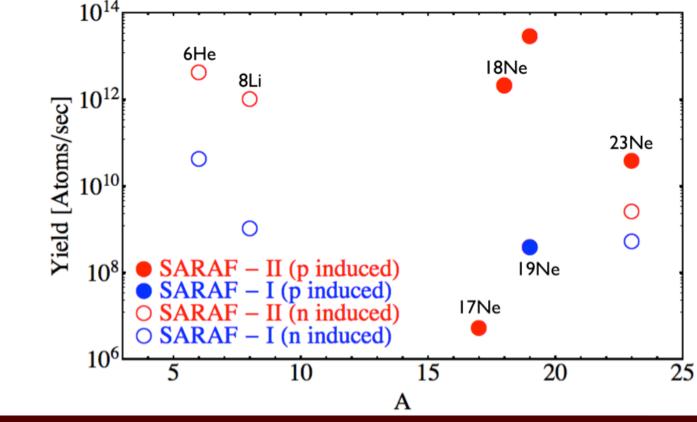
- Pure GT to ground state (tensor interaction)
- * Pure F to 1^{st} excited state (V_{ud})
- *** PNC** via mixing of 0^- with 0^+

∌ ¹⁹Ne


- * Mirror transition to ground state (V_{ud} , and if polarized esp. sensitive to RHC) * ²³Ne
 - Easiest to produce (reaction threshold only 3.8 MeV)
 - ✤ Pure GT to ground state; almost pure GT to 1st excited (tensor interaction)

♣ ¹⁷Ne

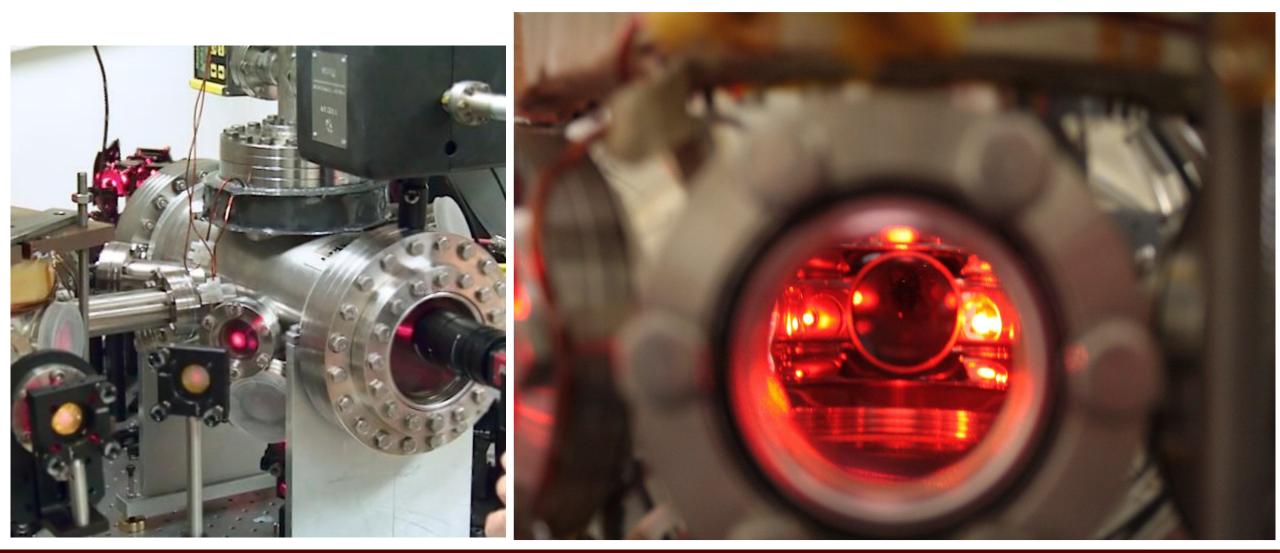
- ***** Large Q-value \Rightarrow Fierz?
- **★** Interesting spectroscopy (Borromean halo \rightarrow halo ¹⁷F)


Production of Ne isotopes @ SARAF

- Initial test @ WI successful \Rightarrow able to produce and move ²³Ne
- SARAF: New, (very) high current p/d accelerator (5 mA/up to 40 MeV) under construction at SOREQ
 - * Currently running d beams on LiF target for neutron beam production with SARAF-I

Production of Ne isotopes @ SARAF

- Initial test @ WI successful \Rightarrow able to produce and move ²³Ne
- SARAF: New, (very) high current p/d accelerator (5 mA/up to 40 MeV) under construction at SOREQ
 - * Currently running *d* beams on LiF target for neutron beam production with SARAF-I
 - Neutron production also possible with liquid-Li (under construction)

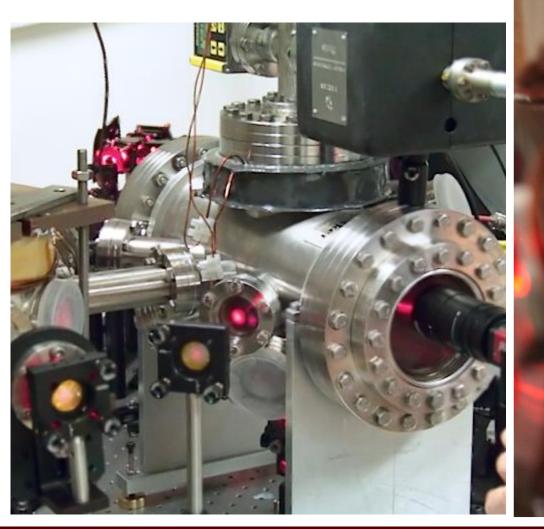

High yields expected!

Trapping Ne isotopes with NeAT

- Produce and transport to NeAT
- Excite to metastable state ($\varepsilon \sim 10^{-5}$)
- Zeeman slower and deflector to reduce backgrounds
- Trap in science chamber, observe β and recoil

Status of NeAT

Demonstrated ability to trap ~10,000 Ne atoms



Status of NeAT

Demonstrated ability to trap ~10,000 Ne atoms

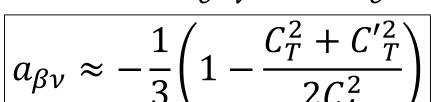
Recently moved to SARAF

⁶He at UW

A.García, Thu 6:10 pm

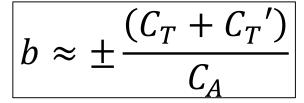
Most sensitive probe is the Fierz interference:

* Decay rate is:
$$dw = dw_0 \left[1 + a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + b \frac{\Gamma m_e}{E_e} \right]$$

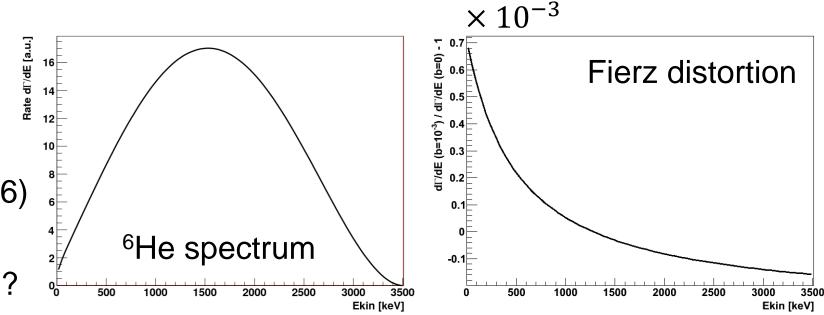

⁶He is a great case!

- Large endpoint (3.5 MeV)
- Nuclear structure under control
- Simple decay
- Sensitive to tensor interactions

Status:


- * Lifetime (PRC 86, 035506)
- Charge state fractions

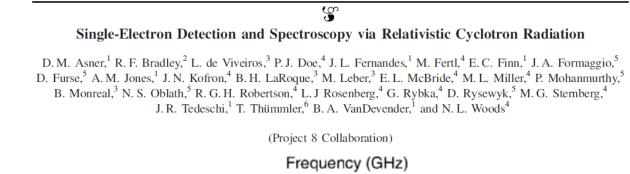
 \ast a_{*B_V*: stats for 0.2%; systs?}

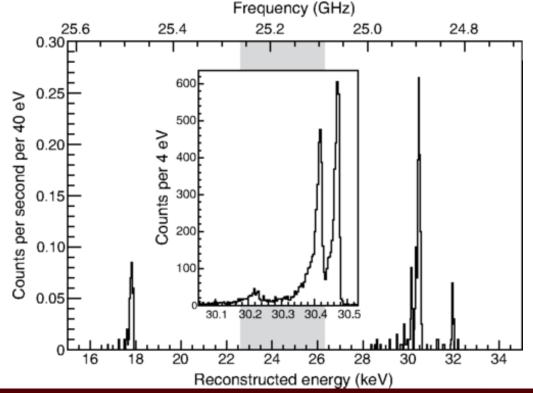

 $\beta - \nu$ correlation

CIPANP 2018

Fierz interference

TEXAS A&M




⁶He at UW – CRES technique

A. Esfahani, was Tue 2:20 pm

New idea: use the Cyclotron Radiation Emission Spectroscopy (CRES) technique PRL 114, 162501 (2015)

Project 8 collaboration gets ₩- $\frac{FWHM}{M} \approx 10^{-3}$ resolution for conversion electrons of 18 – 32 keV Cryocooler 25.6 0.30r Signal Cryogenic 0.25 **Amplifiers** Gas Supply = Counts per 4 eV 0.20 Waveguide 0.15 0.10 Superconducting

Solenoid Magnet

Gas Cell

⁶He at UW – CRES technique

Why CRES for ⁶He?

- * Measures β energy at creation, before complicated energy-loss mechanisms
- High resolution allows debugging of systematic uncertainties
- * No background from photon or e scattering
- ✤ ⁶He in gaseous for with the technique
- ★ ⁶He ion trap allows higher than any ot

 $2\pi f =$

Counts needed nc demand on runnin

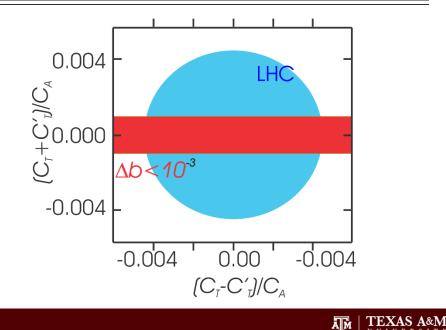
seous form works well
echnique
ap allows sensitivity
an any other proposed
eeded not a big
on running time
$$2\pi f = \frac{qB}{m + E_{kin}}$$

Emerging 6He little-b collaboration

W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵

¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ✤ Show detection of cyclotron radiation from ⁶He
 - Study power distribution


Emerging 6He little-*b* collaboration

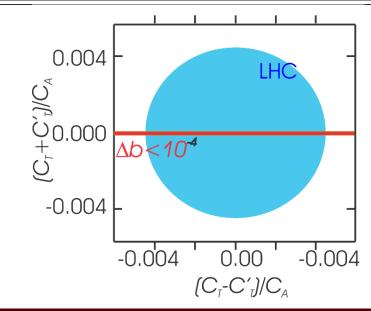
W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵

¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

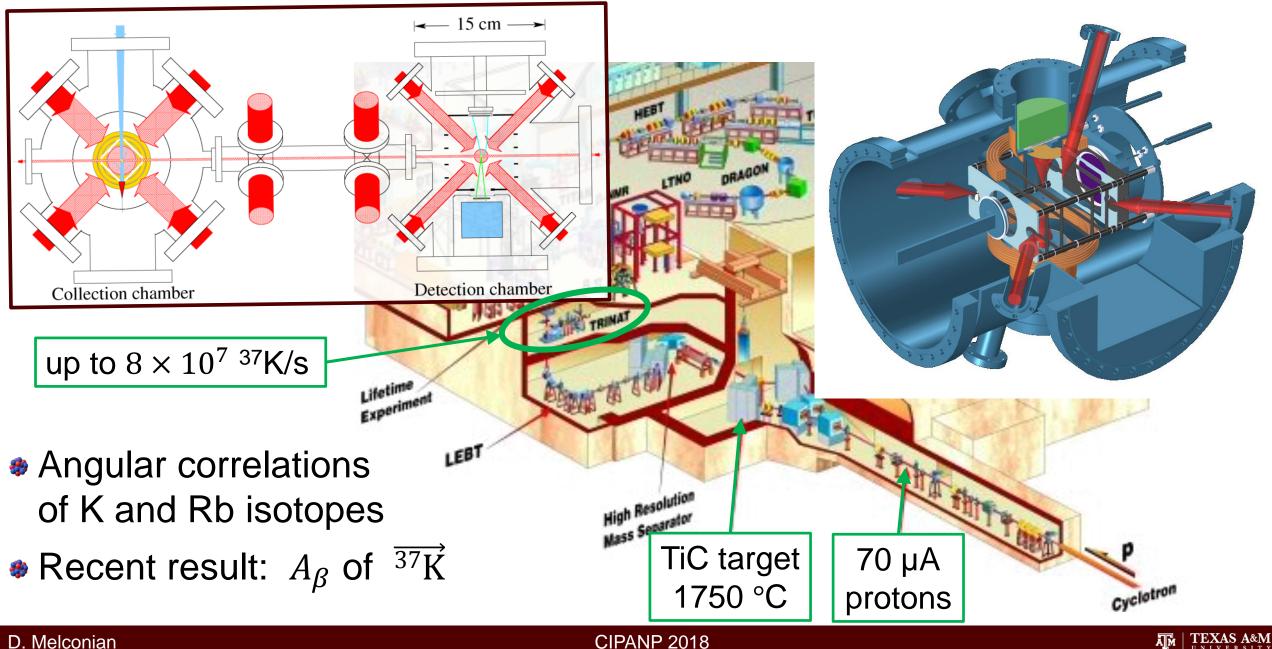
- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ★ Show detection of cyclotron radiation from ⁶He
 - ★ Study power distribution
- Phase II: first measurement ($b < 10^{-3}$)
 - ✤ 6 GHz bandwidth
 - * ⁶He and ¹⁹Ne measurements

Effect		Δb
	No trap	Ion trap
Magnetic field uncertainties	10^{-4}	$< 10^{-4}$
Wall effect uncertainties	10^{-3}	
RF pickup uncertainties	10^{-4}	10^{-5}
Misidentification of events	10^{-4}	5×10^{-5}

Ā M


Emerging 6He little-b collaboration

W. Byron¹, M. Fertl¹, A. Garcia¹, B. Graner¹, G. Garvey¹, M. Guigue⁴, K.S. Khaw¹, A. Leredde², D. Melconian³, P. Mueller², N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil⁵, H.E. Swanson¹, B.A. Vandeevender⁴, F. Wietfeldt⁶, A. Young⁵


¹University of Washington, ²Argonne National Lab, ³Texas A&M, ⁴North Carolina State University, ⁵Pacific Northwest National Laboratory, ⁶Tulane University

- Phase I: proof of principle (next 3 yrs)
 - ✤ 2 GHz bandwidth
 - ✤ Show detection of cyclotron radiation from ⁶He
 - Study power distribution
- Phase II: first measurement ($b < 10^{-3}$)
 - ✤ 6 GHz bandwidth
 - ✤ ⁶He and ¹⁹Ne measurements
- Phase III: ultimate measurement ($b < 10^{-4}$)
 - Ion trap for no limitation from geometric effect

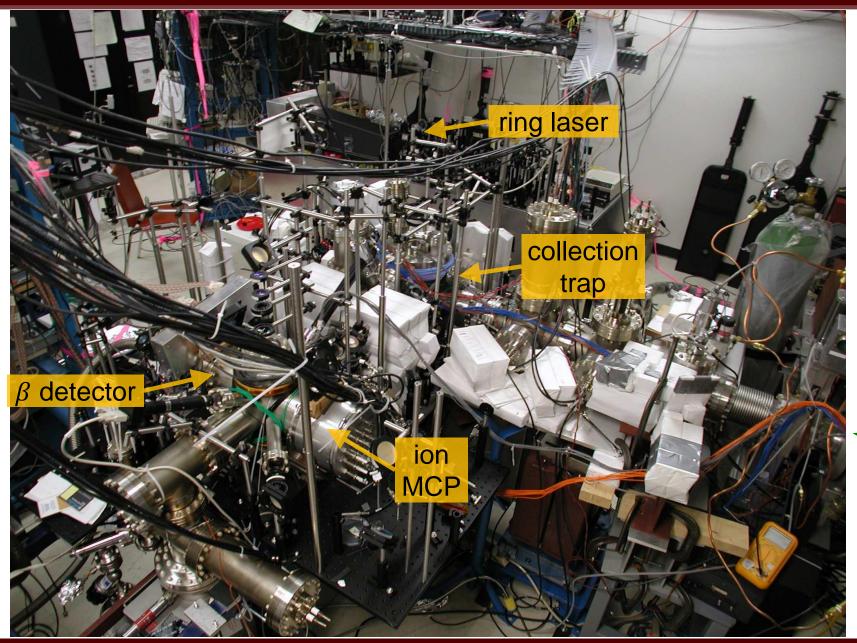
Effect		Δb
	No trap	Ion trap
Magnetic field uncertainties	10^{-4}	$< 10^{-4}$
Wall effect uncertainties	10^{-3}	
RF pickup uncertainties	10^{-4}	10^{-5}
Misidentification of events	10^{-4}	5×10^{-5}

The TRIUMF Neutral Atom Trap

Isobaric analogue decay of ³⁷K

- Beautiful nucleus to test the standard model:
 - **★** Alkali atom \Rightarrow "easy" to trap with a MOT and polarize with optical pumping
 - Isobaric analogue decay
 - ⇒ theoretically clean; recoil-order corrections under control
 - Lifetime, Q-value and branches
 (*i.e.* the *Ft* value) well known
 - * Strong branch to the g.s.

 $3/2^{+}$ 1.2365(9) s ³⁷K β^+ $Q_{EC} = 6.14746(23) \text{ MeV}$ 9.7(12) $3/2^{+}$ 3938 keV 5.7811.6(13)120 $3/2^{+}$ $3602 \, \text{keV}$ 224(12)4.9621(2) $5/2^+$ 3170 keV 6.35 27(2)2.07(11)% $5/2^{+}$ $2796 \,\mathrm{keV}$ 3.79 $3/2^{-}$ $2490 \,\mathrm{keV}$ 29(4)6.88 289(15) 25(20)7.51 $7/2^{-}$ 1611 keV 1000 $1/2^+$ 42.2(75)7.391410 keV97.89(11)% 3.66 ³⁷Ar

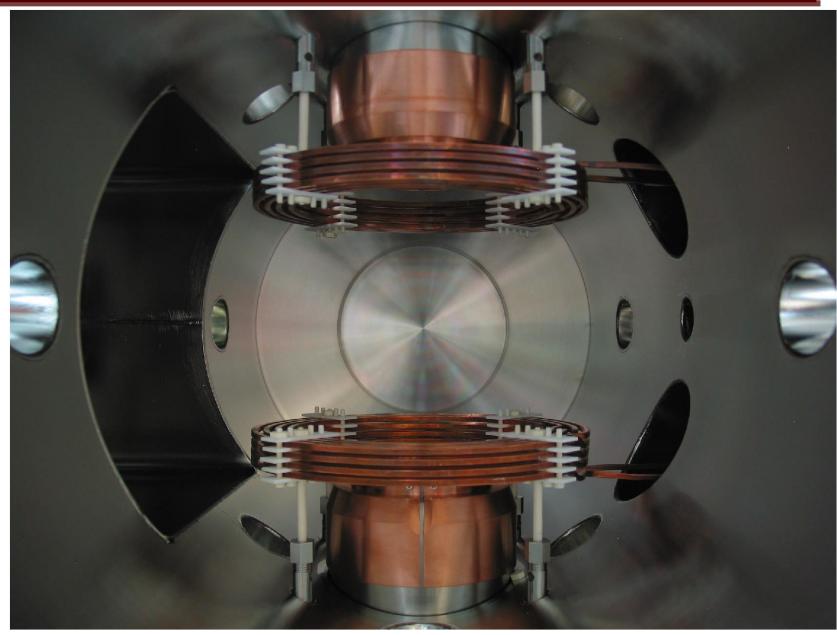

The *Ft* is measured well enough (for now)

$$dW = dW_0 \left[1 + a \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta} E_{\nu}} + b \frac{\Gamma m_e}{E_{\beta}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{p}_{\beta}}{E_{\beta}} + B_{\nu} \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta} E_{\nu}} \right) + \begin{array}{c} \text{alignment} \\ \text{term} \end{array} \right]$$

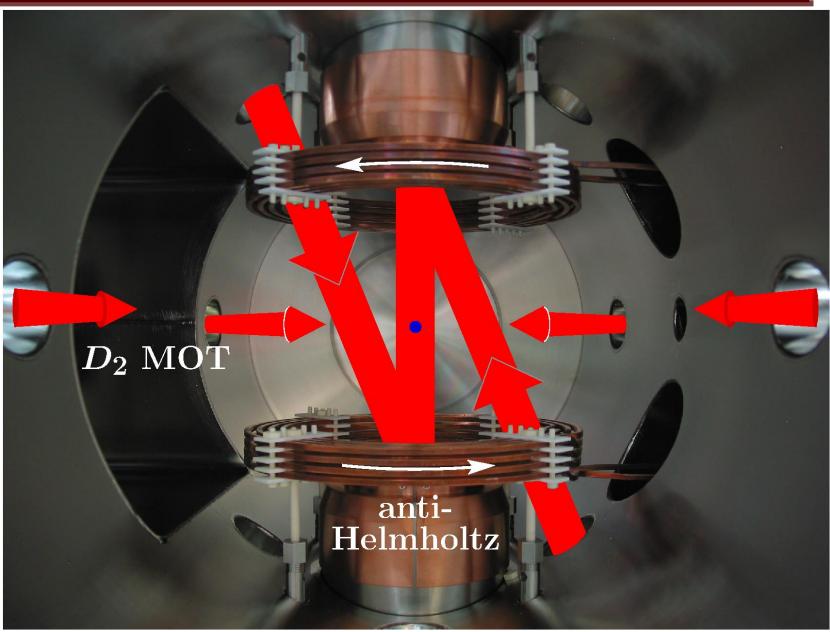
Correlation	SM expectation
$\beta - \nu$ correlation	$a_{\beta\nu} = 0.6648(18)$
Fierz interference	b = 0 (sensitive to scalars & tensors)
β asymmetry	$A_{\beta} = -0.5706(7)$
v asymmetry	$B_{\nu} = -0.7702(18)$
Time-violating correlation	D = 0 (sensitive to imaginary couplings)

----> Data is in hand for improved branching ratio (currently limits predictions)

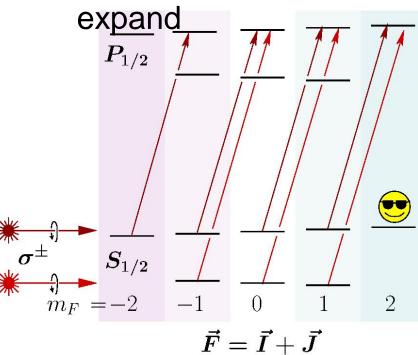
The TRINAT lab (an older picture)

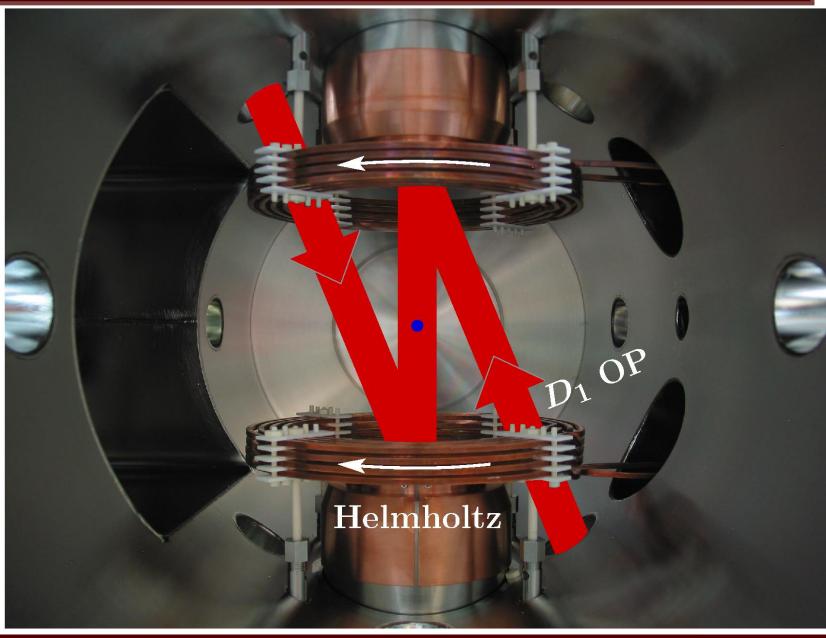


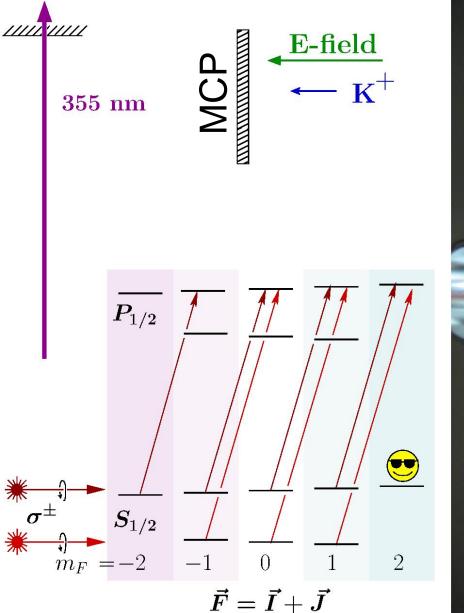
D. Melconian

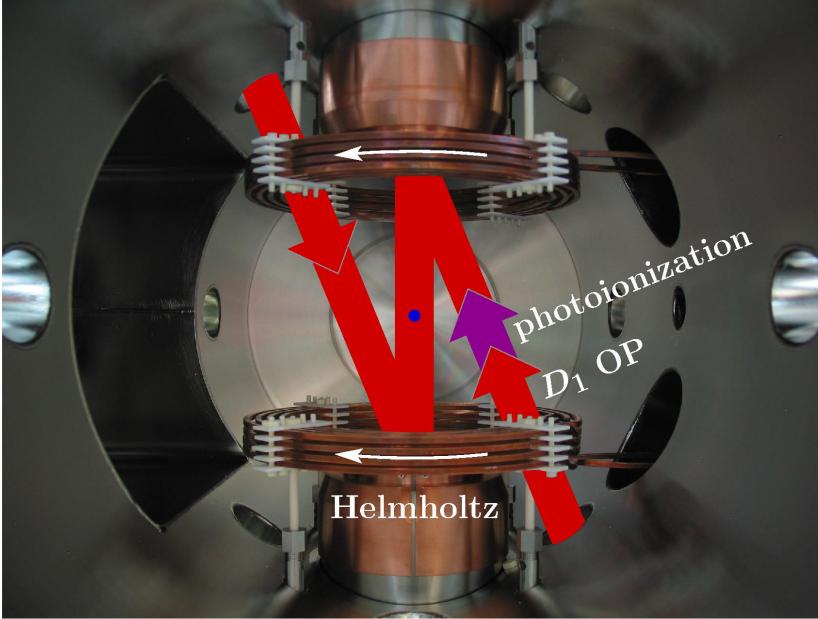


Not shown:

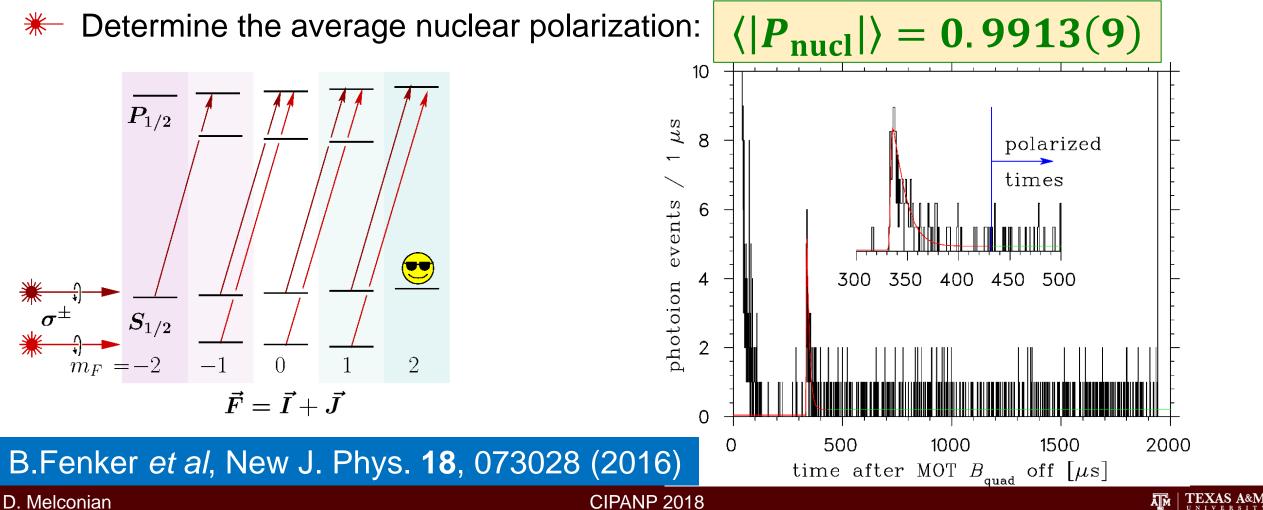

- Recoil MCP detector into page
- Shake-off e⁻ MCP out of page
- Hoops for electric field to collect recoil and shake-off e⁻
- * The β telescopes within the re-entrant flanges (top and bottom)




- MOTs provide a source that is:
 - **卷** Cold (~ 1 mK)
 - ***** Localized (~ 1 mm^3)
 - In an open, backing-free geometry



- Optical pumping:
 - Polarized light transfers ang momentum to atom
 - Nuclear and atomic spins are coupled
 - Polarize as (cold) atoms expand



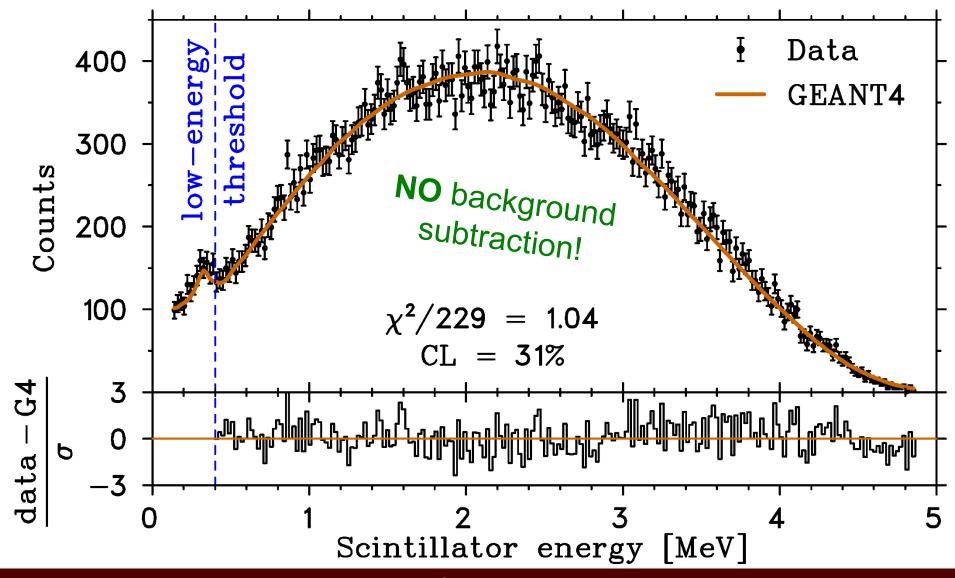
TEXAS A&M

Optical pumping is fast and efficient!

- No time to go into details, but basically
 - * Measure the rate of photions (\Leftrightarrow fluorescence) as a function of time
 - Model sublevel populations using the optical Bloch equations

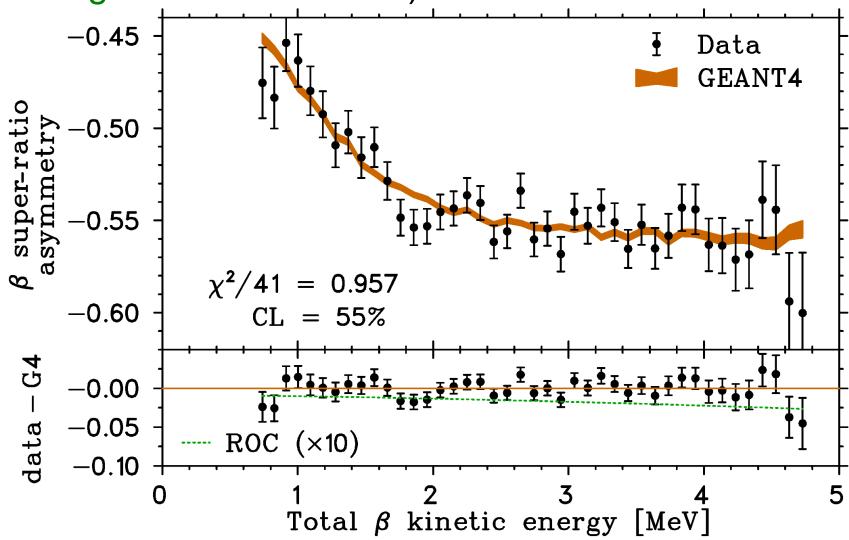
The β asymmetry measurement

 ΔE_{β} detectors: — Double-sided Si-strip

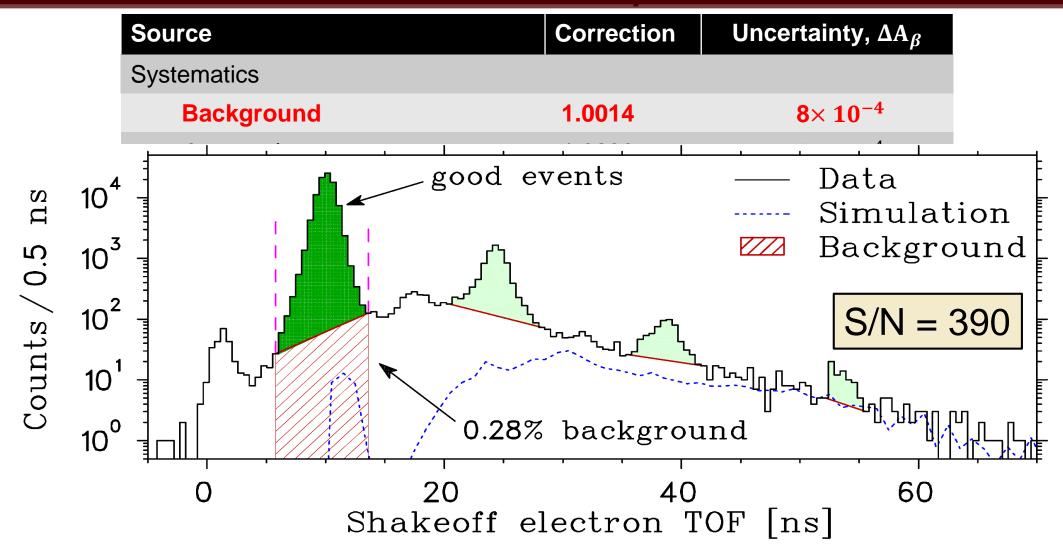

Use **all** information via the super-ratio: $A_{obs}(E_e) = \frac{1-S(E_e)}{1+S(E_e)}$

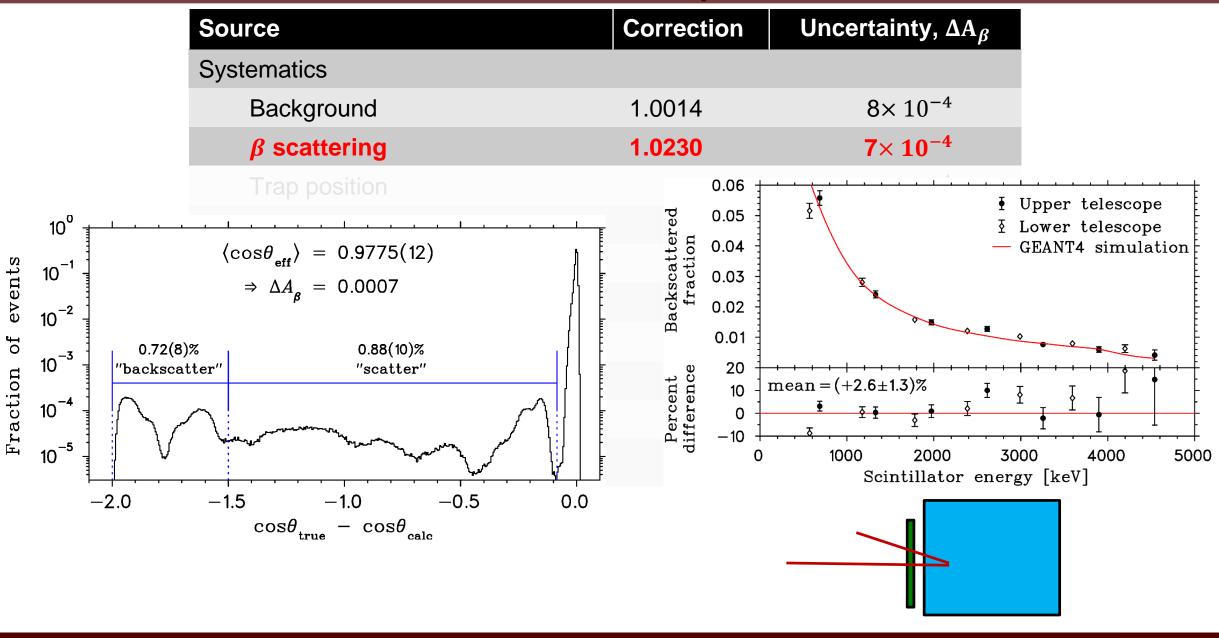
with
$$S(E_e) = \sqrt{\frac{r_1^{\uparrow}(E_e) r_2^{\downarrow}(E_e)}{r_1^{\downarrow}(E_e) r_2^{\uparrow}(E_e)}}$$

polarization axis


³⁷K β asymmetry measurement

Sector Energy spectrum – <u>great agreement</u> with GEANT4 simulations:


³⁷K β asymmetry measurement


• Asymmetry as a function of β energy after unblinding (again, **no** background subtraction!):

(Dominant) Error budget

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13 ×10 ⁻⁴
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19×10^{-4}

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13 ×10 ⁻⁴
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19×10^{-4}

Source	Correction	Uncertainty, ΔA_{β}
Systematics		
Background	1.0014	8×10^{-4}
β scattering	1.0230	7×10^{-4}
Trap position		4×10^{-4}
Trap movement		5×10^{-4}
ΔE position cut		4×10^{-4}
Shake-off e^- TOF region		3×10^{-4}
TOTAL SYSTEMATICS		13×10^{-4}
STATISTICS		13 × 10 ⁻⁴
POLARIZATION		5×10^{-4}
TOTAL UNCERTAINTY		19 ×10 ⁻⁴
-0.5707(19) cf A_{β}^{SM} =	= -0.570	6(7) (includes recoil- corrections, ΔA_{β}

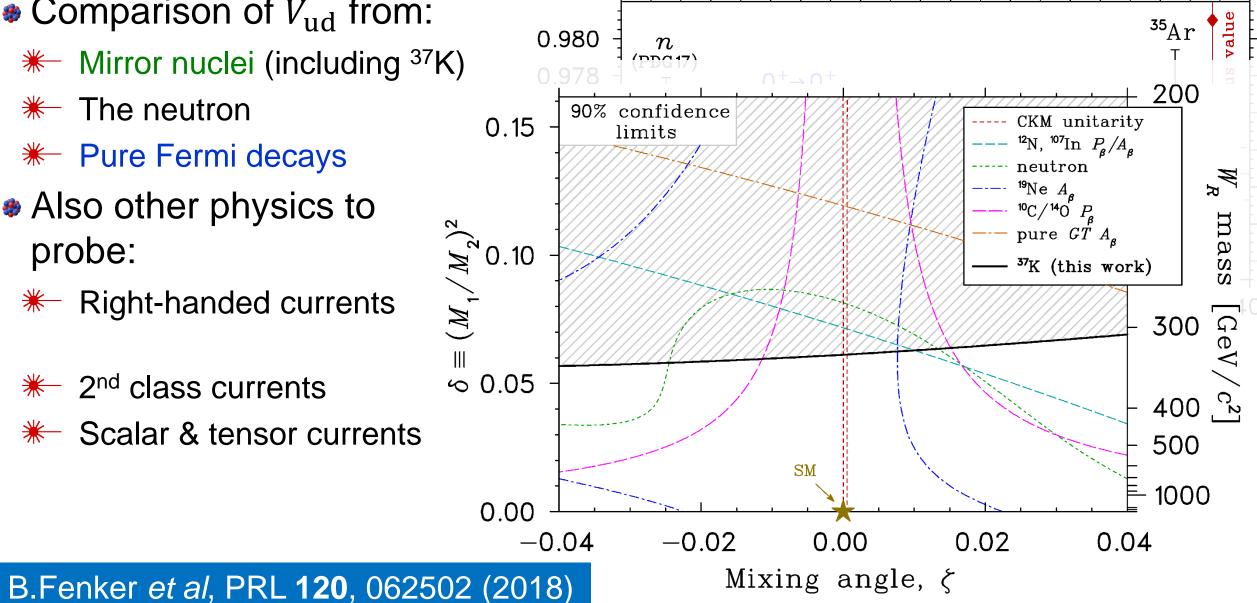
der = -0.5/06(7) corrections, $\Delta A_{\beta} \approx -0.0028 \frac{E_{\beta}}{E_{\gamma}}$

B.Fenker et al, PRL 120, 062502 (2018)

B

meas

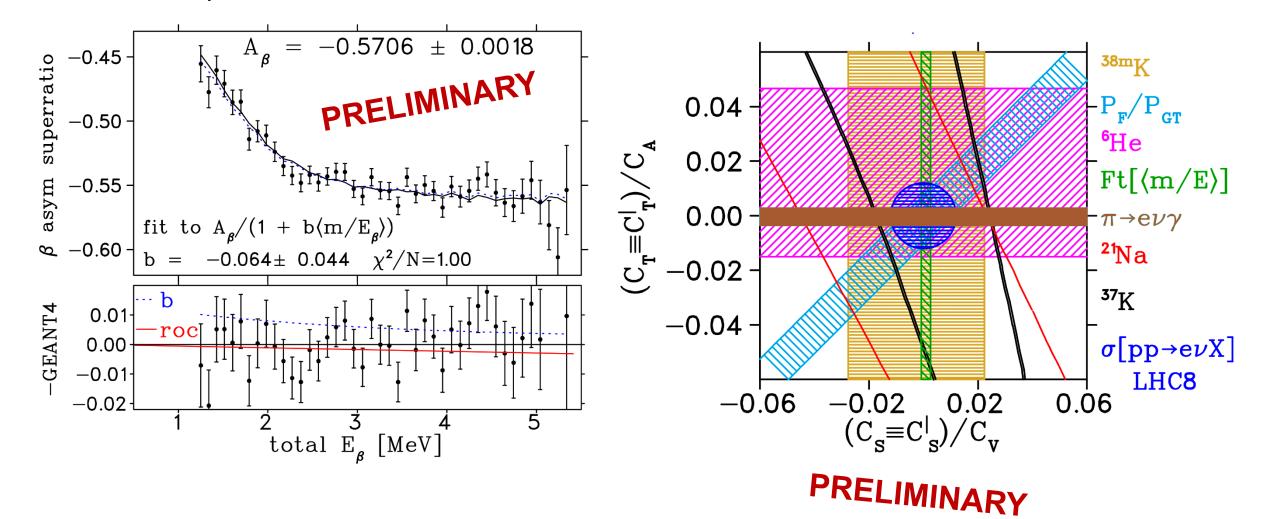
CIPANP 2018

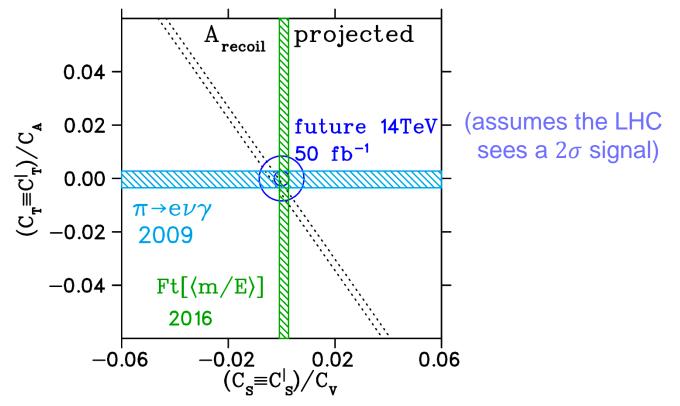

Interpretation and future prospects

• Comparison of $V_{\rm ud}$ from: ³⁵Ar alu 0.980 n***** Mirror nuclei (including 37 K) (PDG17) 0.978 $0^+ \rightarrow 0^+$ $\left< V_{\rm ud} \right>_{\rm mirror}$ previo ₩-The neutron 0.976 ²¹Na $V^{
m nq}$ 0.974 Pure Fermi decays 0.972 ³⁷K 0.970 ¹⁹Ne (DNP16) **24**Al 0.968 20 30 0 40 10 of parent nucleus A

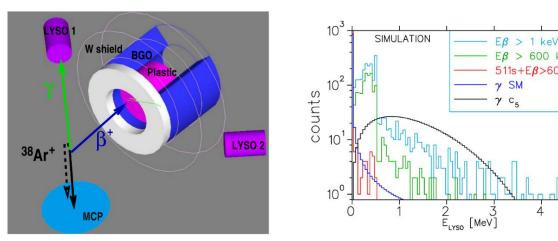
B.Fenker *et al*, PRL **120**, 062502 (2018)

Interpretation and future prospects


- Comparison of $V_{\rm ud}$ from:
 - ***** Mirror nuclei (including 37 K)
 - ★ The neutron
 - Pure Fermi decays
- Also other physics to probe:
 - Right-handed currents
 - ★ 2nd class currents
 - Scalar & tensor currents


D. Melconian

• Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents


• Improve A_{β} measurement by $3 - 5 \times$

- Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents
- Improve A_{β} measurement by $3-5 \times$
- Measure $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$
 - * Technique demonstrated in ⁸⁰Rb (Pitcairn *et al.*, PRC **79**, 015501 (2009))
 - High statistics measurement

- Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents
- Improve A_{β} measurement by $3-5 \times$
- Measure $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$
 - * Technique demonstrated in ⁸⁰Rb (Pitcairn *et al.*, PRC (2009))
 - High statistics measurement
- Measure triple-vector $(\vec{p}_e \times \vec{k}_{\gamma}) \cdot \vec{p}_{\nu}$ (*T*-violating) correlation in ^{38m}K
 - * Motivated by Gardner and He, PRD 87, 116012 (2013)

Effect 250x larger than for the neutron
Fake final state effect small: 8 × 10⁻⁴
unique measurement in 1st generation
\$\sigma \cdot 0.02\$ in 1 week

- Complete analysis as a function of $E_{\beta} \Rightarrow$ Fierz, 2nd class currents
- Improve A_{β} measurement by $3-5 \times$
- Measure $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$
 - * Technique demonstrated in ⁸⁰Rb (Pitcairn *et al.*, PRC (2009))
 - High statistics measurement
- Measure triple-vector $(\vec{p}_e \times \vec{k}_{\gamma}) \cdot \vec{p}_{\nu}$ (*T*-violating) correlation in ^{38m}K
 - * Motivated by Gardner and He, PRD **87**, 116012 (2013)
- E_{ν} spectrum in $0^- \rightarrow 0^+$ decay of ⁹²Rb
 - ***** Important for modeling nuclear reactors (sterile v?) and non-proliferation

Final thought and thanks

- MOTs helping pave the way for the precision frontier
- In NeAT about to get going, ⁶He with CRES super-exciting, and more good things to come from TRINAT

Final thought and thanks

- MOTs helping pave the way for the precision frontier
- NeAT about to get going, ⁶He with CRES super-exciting, and more good things to come from TRINAT

CIPANP 2018

TEXAS A&M

Ā M

Ā M