Nuclear β Decay: Using the Atomic Nucleus to Probe Symmetries of the Weak Interaction

Dan Melconian

March 24, 2018

Overview

Introduction

- Fundamental symmetries
- What is our current understanding?
- How do we test what lies beyond?

The TRIUMF Neutral Atom Trap

- Angular correlations of polarized ³⁷K
- Recent results
- Looking forward

Scope of fundamental physics

From the very smallest scales ...

Scope of fundamental physics

the atom

From the very smallest scales ...

... to the very largest

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

• quantum + special rel ⇒ quantum field theory

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

- quantum + special rel ⇒ quantum field theory
- Noether's theorem: symmetry ⇔ conservation law

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

- quantum + special rel ⇒ quantum field theory
- Noether's theorem: symmetry

 conservation law

Maxwell's eqns invariant under changes in vector potential

conservation of electric charge, *q*

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

- quantum + special rel ⇒ quantum field theory
- Noether's theorem: symmetry

 conservation law

Maxwell's eqns invariant under changes in vector potential

conservation of electric charge, q

and there are other symmetries too:

time ⇔ energy

space ⇔ momentum

rotations ⇔ angular momentum

:

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

- quantum + special rel ⇒ quantum field theory
- Noether's theorem: symmetry ⇔ conservation law
- 12 elementary particles, 4 fundamental forces

	1 st 2 nd 3 rd	Q	mediator	force
ons	$(\nu_e)(\nu_\mu)(\nu_\tau)$	0	$oldsymbol{g}$	strong
leptons	$\binom{\nu_e}{e} \binom{\nu_\mu}{\mu} \binom{\nu_\tau}{\tau}$	-1	$\left.egin{array}{c} oldsymbol{W}^{\pm} \ oldsymbol{Z}^{\circ} \end{array} ight\}$	weak
rks	(u) (c) (t)	+2/3	$oldsymbol{Z}^{\circ}$	weak
quarks	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	-1/3	γ	EM

All of the *known* elementary particles and their interactions are described within the framework of

The Standard Model

- quantum + special rel ⇒ quantum field theory
- Noether's theorem: symmetry ⇔ conservation law
- 12 elementary particles, 4 fundamental forces
 and 1 Higgs boson

Does the Standard Model work??

Does the Standard Model work??

- ✓ It predicted the existence of the W^{\pm} , Z_{\circ} , g, c and t \rightsquigarrow and now the Higgs!
- ✓ It is a renormalizable theory
- ✓ GSW ⇒ unified the weak force with electromagnetism
- QCD explains quark confinement

Does the Standard Model work??

- ✓ It predicted the existence of the W^{\pm} , Z_{\circ} , g, c and t \rightsquigarrow and now the Higgs!
- ✓ It is a renormalizable theory
- ✓ GSW ⇒ unified the weak force with electromagnetism
- QCD explains quark confinement

$$a_{\mu} \equiv rac{1}{2}(g-2)$$

a tantalizing 3.5σ discrepancy...

(see 2017 PDG)

But, still good to a few parts-per-billion!!

Does the Standard Model work??

- ✓ It predicted the existence of the W^{\pm} , Z_{\circ} , g, c and t \rightsquigarrow and now the Higgs!
- ✓ It is a renormalizable theory
- ✓ GSW ⇒ unified the weak force with electromagnetism
- QCD explains quark confinement

$$a_{\mu} \equiv rac{1}{2}(g-2)$$

a tantalizing 3.5σ discrepancy...

(see 2017 PDG)

But, still good to a few parts-per-billion!!

Wow ... this is

the most precisely tested theory ever conceived!

But there are still questions ...

- parameters values: Does our "ultimate" theory really need 25 arbitrary constants? Do they change with time?
- of the energy-matter of the universe!
- **baryon asymmetry**: Why more matter than anti-matter?
- strong CP: Do axions exist? Fine-tuning?
- neutrinos: Dirac or Majorana? Mass hierarchy?
- page 15. The second representation of the sec
- **weak mixing**: Is the CKM matrix unitary?
- parity violation: Is parity maximally violated in the weak interaction? No right-handed currents?
- **@ gravity**: Of course, we can't forget about a quantum description of gravity!

How we all test the SM

- colliders: CERN, SLAC, FNAL, BNL, KEK, DESY . . .
- *** nuclear physics**: traps, exotic beams, neutron, EDMs, $0\nu\beta\beta$, ...
- **partings:** sterile ν s, oscillations, coherent scattering, ...
- cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, ...
- **muon decay**: Michel parameters: ρ, δ, η , and ξ
- atomic physics: anapole moment, spectroscopy, ...

How we all test the SM

- colliders: CERN, SLAC, FNAL, BNL, KEK, DESY . . .
- *** nuclear physics**: traps, exotic beams, neutron, EDMs, $0\nu\beta\beta$, ...
- **neutrinos**: sterile ν s, oscillations, coherent scattering, ...
- cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, ...
- **muon decay**: Michel parameters: ρ , δ , η , and ξ
- atomic physics: anapole moment, spectroscopy, . . .

All of these techniques are complementary and important

- different experiments probe different (new) physics
- if signal seen, cross-checks crucial!

How we all test the SM

- colliders: CERN, SLAC, FNAL, BNL, KEK, DESY . . .
- *** nuclear physics**: traps, exotic beams, neutron, EDMs, $0\nu\beta\beta$, ...
- **neutrinos**: sterile ν s, oscillations, coherent scattering, ...
- cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, . . .
- *** muon decay**: Michel parameters: ho, δ, η , and ξ
- atomic physics: anapole moment, spectroscopy, ...

All of these techniques are complementary and important

- different experiments probe different (new) physics
- if signal seen, cross-checks crucial!

often they are interdisciplinary

(which makes it extra fun!)

How does high-energy physics test the SM?

Colliders: CERN, SLAC, FNAL, BNL, KEK, DESY,

direct search of particles

How does high-energy physics test the SM?

Colliders: CERN, SLAC, FNAL, BNL, KEK, DESY,

direct search of particles

- large multi-national collabs
- billion \$ price-tags

Overcoming temptation, David opted against the obvious, unsportsmanlike cheap shot.

Nuclear physics: radioactive ion beam facilities

indirect search via precision measurements

Nuclear physics: radioactive ion beam facilities

indirect search via precision measurements

Nuclear physics: radioactive ion beam facilities

indirect search via precision measurements

- Initially quite a mystery:
 - * why does the " β " particle has a continuous energy spectrum? is angular momentum not conserved?
 - * what force causes it?

- Initially quite a mystery:
 - * why does the " β " particle has a continuous energy spectrum? is angular momentum not conserved?
 - → Pauli explains with a new spin-1/2 particle, the neutrino
 - * what force causes it?
 - \rightsquigarrow Fermi introduces a new force in his theory of β decay

- Initially quite a mystery:
 - * why does the " β " particle has a continuous energy spectrum? is angular momentum not conserved?
 - → Pauli explains with a new spin-1/2 particle, the neutrino
 - * what force causes it?
 - \sim Fermi introduces a new force in his theory of β decay
- Revolutionary idea and discovery: unlike the other forces, parity is not conserved by the weak interaction!

- Initially quite a mystery:
 - * why does the " β " particle has a continuous energy spectrum? is angular momentum not conserved?
 - → Pauli explains with a new spin-1/2 particle, the neutrino
 - * what force causes it?
 - \rightsquigarrow Fermi introduces a new force in his theory of β decay
- Revolutionary idea and discovery: unlike the other forces, parity is not conserved by the weak interaction!

* Now understood as a (V-A) interaction at the quark level mediated by the W^{\pm} boson:

-10

- Initially quite a mystery:
 - * why does the " β " particle has a continuous energy spectrum? is angular momentum not conserved?
 - → Pauli explains with a new spin-1/2 particle, the neutrino
 - * what force causes it?
 - \rightsquigarrow Fermi introduces a new force in his theory of β decay
- Revolutionary idea and discovery: unlike the other forces, parity is not conserved by the weak interaction!

* Now understood as a (V-A) interaction at the quark level mediated by the W^{\pm} boson:

But is it completely left-handed...?

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

$$H_{\rm SM} = G_F V_{ud} \, \overline{e} \left(\gamma_{\mu} - \gamma_{\mu} \gamma_5 \right) \nu_e \, \overline{u} \left(\gamma^{\mu} - \gamma^{\mu} \gamma_5 \right) d$$

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

Vector:
$$\hat{P}|\Psi\rangle = -|\Psi\rangle$$

$$H_{\rm SM} = G_F V_{ud} \, \overline{e} \left(\gamma_{\mu} - \gamma_{\mu} \gamma_5 \right) \nu_e \, \overline{u} \left(\gamma^{\mu} - \gamma^{\mu} \gamma_5 \right) d$$

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

$$\hat{P}\vec{A} = +\vec{A}$$

 $\vec{A} = \text{M.C.}$ Escher reptiles

$$H_{\rm SM} = G_F V_{ud} \, \overline{e} \left(\gamma_{\mu} - \gamma_{5} \right) \nu_e \, \overline{u} \left(\gamma^{\mu} - \gamma^{5} \right) e^{i \overline{u}} \left(\gamma^{\mu} - \gamma^{5} \right) e^{i \overline{u}}$$

Axial-vector: $\hat{P}|\Psi\rangle = +|\Psi\rangle$

Vector: $\hat{P}|\Psi\rangle = -|\Psi\rangle$

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

Vector:
$$\hat{P}|\Psi\rangle = -|\Psi\rangle$$
 $H_{\mathrm{SM}} = G_F V_{ud} \, \overline{e} \, (\gamma_{\mu}) - (\gamma_{\mu} \gamma_5) \nu_e \, \overline{u} \, (\gamma^{\mu}) - (\gamma^{\mu} \gamma_5) d$
Axial-vector: $\hat{P}|\Psi\rangle = +|\Psi\rangle$

Low-energy limit of a **deeper** $SU(2)_R \times SU(2)_L \times U(1)$ theory?

Extensions to the SM predict right-handed currents

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

Vector:
$$\hat{P}|\Psi\rangle = -|\Psi\rangle$$

$$H_{\mathrm{SM}} = G_F V_{ud} \, \overline{e} \, (\gamma_{\mu}) - (\gamma_{\mu} \gamma_5) \nu_e \, \overline{u} \, (\gamma^{\mu}) - (\gamma^{\mu} \gamma_5) d$$

$$\mathbf{Axial\text{-vector:}} \quad \hat{P}|\Psi\rangle = +|\Psi\rangle$$

Low-energy limit of a **deeper** $SU(2)_R \times SU(2)_L \times U(1)$ theory?

 \Rightarrow 3 more vector bosons: W_R^{\pm}, Z'

Simplest extensions: "manifest left-right symmetric" models \rightsquigarrow only 2 new parameters: W_2 mass and a mixing angle, ζ :

$$|W_L\rangle = \cos \zeta |W_1\rangle - \sin \zeta |W_2\rangle$$
$$|W_R\rangle = \sin \zeta |W_1\rangle + \cos \zeta |W_2\rangle$$

Extensions to the SM predict right-handed currents

The electroweak interaction: $SU(2)_L \times U(1) \Rightarrow W_L^{\pm}, Z^{\circ}, \gamma$

Built upon **maximal** parity violation:

Vector:
$$\hat{P}|\Psi\rangle = -|\Psi\rangle$$
 $H_{\mathrm{SM}} = G_F V_{ud} \, \overline{e} (\gamma_{\mu} - \gamma_{\mu} \gamma_5) \nu_e \, \overline{u} (\gamma^{\mu} - \gamma^{\mu} \gamma_5) d$
Axial-vector: $\hat{P}|\Psi\rangle = +|\Psi\rangle$

Low-energy limit of a **deeper** $SU(2)_R \times SU(2)_L \times U(1)$ theory?

 \Rightarrow 3 more vector bosons: W_R^{\pm}, Z'

Simplest extensions: "manifest left-right symmetric" models \rightsquigarrow only 2 new parameters: W_2 mass and a mixing angle, ζ :

$$|W_L\rangle = \cos \zeta |W_1\rangle - \sin \zeta |W_2\rangle |W_R\rangle = \sin \zeta |W_1\rangle + \cos \zeta |W_2\rangle$$

The existence of RHCs would affect the values of β decay parameters

 \bullet Begin by looking at the rate for β decay

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \underbrace{\frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi}_{\text{basic decay rate}} \left(1 + \underbrace{\frac{\beta - \nu \text{ correlation}}{a_{\beta \nu}} \frac{\vec{p_e} \cdot \vec{p}_{\nu_e}}{E_e E_{\nu_e}}}_{\text{Fierz term}} + \underbrace{\frac{\Gamma m_e}{E_e}}_{\text{E}_e}\right)$$

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi \left(1 + \frac{\beta - \nu \text{ correlation}}{a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_{\nu_e}}}{E_e E_{\nu_e}}} + \frac{\vec{\Gamma} m_e}{b_e} \right)$$

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi \left(1 + \frac{\beta - \nu \text{ correlation}}{a_{\beta \nu}} \underbrace{\vec{p_e} \cdot \vec{p_{\nu_e}}}_{E_e E_{\nu_e}} + \underbrace{b \frac{\Gamma m_e}{E_e}}_{E_e}\right)$$

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi \left(1 + \mathbf{a}_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p}_{\nu_e}}{E_e E_{\nu_e}} + b \frac{\Gamma m_e}{E_e}\right)$$

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \underbrace{\frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi}_{\text{because}} \left(1 + \underbrace{a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_{\nu_e}}}{E_e E_{\nu_e}}}_{\text{because}} + \underbrace{b \frac{\Gamma m_e}{E_e}}_{\text{because}} + \underbrace{\frac{\langle \vec{I} \rangle}{I} \cdot \left[\underbrace{A_\beta \frac{\vec{p_e}}{E_e}}_{\text{because}} + \underbrace{B_\nu \frac{\vec{p_\nu}}{E_\nu}}_{\text{vasym}} + \underbrace{D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu}}_{\text{T-violating}} \right] + \dots \right)$$

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \underbrace{\frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi}_{\text{because}} \left(1 + \underbrace{\frac{\beta - \nu \text{ correlation}}{E_e E_{\nu_e}}}_{\text{because}} + \underbrace{\frac{\Gamma m_e}{E_e}}_{\text{because}} + \underbrace{\frac{\langle \vec{I} \rangle}{E_e}}_{\text{because}} + \underbrace{\frac{\langle \vec{I} \rangle}{I} \cdot \left[\underbrace{\frac{A_\beta \vec{P}_e}{E_e}}_{\text{because}} + \underbrace{\frac{\vec{P}_e \cdot \vec{P}_{\nu_e}}{E_e E_{\nu_e}}}_{\text{correlation}} + \underbrace{\frac{\Gamma m_e}{E_e E_{\nu_e}}}_{\text{because}}\right] + \dots\right)}_{\text{because}}$$

Expand to the often-quoted angular distribution of the decay: (Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

$$\frac{d^5W}{dE_e d\Omega_e d\Omega_{\nu_e}} = \frac{G_F^2 |V_{ud}|^2}{(2\pi)^5} p_e E_e (A_0 - E_e)^2 \xi \left(1 + \underbrace{a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_{\nu_e}}}{E_e E_{\nu_e}}}_{Fierz term} + \underbrace{b\frac{\Gamma m_e}{E_e}}_{E_e} + \underbrace{\frac{\langle \vec{I} \rangle}{I} \cdot \left[\underbrace{A_\beta \frac{\vec{p_e}}{E_e}}_{E_e} + B_\nu \frac{\vec{p_\nu}}{E_\nu} + D\frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu}\right]}_{T \text{-violating}} + \dots\right)$$

E.g.
$$A_{\beta} = \frac{-2\rho}{1+\rho^2} \left[(1-xy)\sqrt{\frac{3(1+x^2)}{5(1+y^2)}} - \frac{\rho(1-y^2)}{5(1+y^2)} \right]$$

where $x \approx (M_L/M_R)^2 - \zeta$
and $y \approx (M_L/M_R)^2 + \zeta$

are right-handed current parameters that are zero in the SM, and $\rho \equiv \frac{C_A M_{GT}}{C_V M_F}$

Expand to the often-quoted angular distribution of the decay: (Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

E.g.
$$A_{\beta} = \frac{-2\rho}{1+\rho^2} \left[(1-xy)\sqrt{\frac{3(1+x^2)}{5(1+y^2)}} - \frac{\rho(1-y^2)}{5(1+y^2)} \right]$$

where $x \approx (M_L/M_R)^2 - \zeta$
and $y \approx (M_L/M_R)^2 + \zeta$

are right-handed current parameters that are zero in the SM, and $\rho \equiv \frac{C_A M_{GT}}{C_V M_F}$

Expand to the often-quoted angular distribution of the decay: (Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

Goal must be \lesssim **0.1%** to complement LHC

Naviliat-Čunčić and González-Alonso, Ann. Phys. **525**, 600 (2013) Cirigliano, González-Alonso and Graesser, JHEP **1302**, 046 (2013) Vos, Wilschut and Timmermans, RMP **87**, 1483 (2015)

zero in the SM, and $ho \equiv \frac{C_A M_{GT}}{C_V M_F}$

 \bullet Perform a β decay experiment on short-lived isotopes

- * Perform a β decay experiment on short-lived isotopes
- Make a precision measurement of the angular correlation parameters

- \bullet Perform a β decay experiment on **short-lived** isotopes
- Make a precision measurement of the angular correlation parameters
- **Compare** the SM predictions to observations

-13

- \bullet Perform a β decay experiment on **short-lived** isotopes
- Make a precision measurement of the angular correlation parameters
- **Compare** the SM predictions to observations
- Look for **deviations** as an indication of new physics

 \bullet Perform a β decay experiment on **short-lived** isotopes

Make a precision measurement of the angular correlation parameters

C.S. Wu's experiment - Parity violation

B ASYMMETRY (AT PULSE HEIGHT 10V)
EXCHANGE GAS IN

1.00
090
070
2
4
6
8
10
12
14
16
18
TEMPS (minutes)

Fig. 1. Schematic drawing of the lower part of the cryostat.

C.S. Wu's experiment - Parity violation

C.S. Wu's experiment - Parity violation

The β^+ -decay of ^{37}K

Almost as simple as $0^+ \rightarrow 0^+$:

- isobaric analogue decay
- **strong** branch to g.s.

The β^+ -decay of ^{37}K

Almost as simple as $0^+ \rightarrow 0^+$:

- isobaric analogue decay
- **strong** branch to g.s.
- polarization/alignment
- mixed Fermi/Gamow-Teller
- \Rightarrow need $ho\equiv G_A M_{GT}/G_V M_F$ to get SM prediction for correlation parameters

Get ρ from the comparative half-life:

$$\boldsymbol{\rho}^2 = \frac{2\mathcal{F}t^{0^+ \to 0^+}}{\mathcal{F}t} - 1$$

The β^+ -decay of 37 K

Almost as simple as $0^+ \rightarrow 0^+$:

- 😇 isobaric analogue decay
- 🔴 **strong** branch to g.s.
- polarization/alignment
- mixed Fermi/Gamow-Teller
- \Rightarrow need $ho \equiv G_A M_{GT}/G_V M_F$ to get SM prediction for correlation parameters

Get
$$\rho$$
 from the comparative half-life:
$$\rho^2 = \frac{2\mathcal{F}t^{0^+ \to 0^+}}{\mathcal{F}t} - 1$$

$$\rho = 0.5768(21)$$

 $\Rightarrow A_{\beta}^{\rm SM} = -0.5719(7)$, predicted to <0.1% \checkmark

Atomic methods have opened up a new vista in precision work and provide the ability to push β decay measurements to $\lesssim 0.1\%$

- laser-cooling and trapping (magneto-optical traps)
- sub-level state manipulation (optical pumping)
- characterization/diagnostics (photoionization)

Atomic methods have opened up a new vista in precision work and provide the ability to push β decay measurements to $\lesssim 0.1\%$

laser-cooling and trapping (magneto-optical traps)

Atomic methods have opened up a new vista in precision work and provide the ability to push β decay measurements to $\lesssim 0.1\%$

laser-cooling and trapping (magneto-optical traps)

Atomic methods have opened up a new vista in precision work and provide the ability to push β decay measurements to $\lesssim 0.1\%$

laser-cooling and trapping (magneto-optical traps)

Traps provide a backing-free, very cold ($\lesssim 1$ mK), localized ($\sim 1 \text{ mm}^3$) source of isomerically-selective, short-lived radioactive atoms

Atomic methods have opened up a new vista in precision work and provide the ability to push β decay measurements to $\lesssim 0.1\%$

laser-cooling and trapping (magneto-optical traps)

Traps provide a backing-free, very cold ($\lesssim 1$ mK), localized ($\sim 1 \text{ mm}^3$) source of isomerically-selective, short-lived radioactive atoms

The TRINAT lab

The measurement chamber

 $ec{F}=ec{I}+ec{J}$

Atomic measurement of P

Deduce *P* based on a model of the excited state populations

Atomic measurement of P

Deduce *P* based on a model of the excited state populations

Atomic measurement of P

Deduce *P* based on a model of the excited state populations

Energy Spectrum Compared to GEANT4

Note: there is no background subtraction!

$$A_{\text{obs}}(E_e) = \frac{1 - S(E_e)}{1 + S(E_e)}, \text{ where } S(E_e) \equiv \sqrt{\frac{r_1^-(E_e)r_2^+(E_e)}{r_1^+(E_e)r_2^-(E_e)}}$$

B. Fenker, ^{1,2} A. Gorelov, ³ D. Melconian, ^{1,2,*} J. A. Behr, ³ M. Anholm, ^{3,4} D. Ashery, ⁵ R. S. Behling, ^{1,6} I. Cohen, ⁵ I. Craiciu, ³ G. Gwinner, ⁴ J. McNeil, ^{7,3} M. Mehlman, ^{1,2} K. Olchanski, ³ P. D. Shidling, ¹ S. Smale, ³ and C. L. Warner ³

A_{β} Error Budget

Source	Correction	Uncertainty
Systematics		
Background	1.0014	0.0008
β scattering ^a	1.0230	0.0007
$\operatorname{Trap}\left(\sigma^{+}\operatorname{vs}\sigma^{-} ight)$	position (typ $\lesssim \pm 20 \ \mu m$) sail velocity (typ $\lesssim \pm 30 \ \mu m/ms$) temperature (typ $\lesssim \pm 0.2 \ mK$)	0.0004 0.0005 0.0001
Si-strip $\begin{cases} \text{radius}^{\text{a}}(15.5^{+3.5}_{-5.5} \text{ mm}) \\ \text{energy agreement } (\pm 3\sigma \rightarrow \pm 5\sigma) \\ \text{threshold } (60 \rightarrow 40 \text{ keV}) \end{cases}$		0.0004 0.0002 0.0001
Shakeoff electron TOF region ($\pm 3.8 \rightarrow \pm 4.6 \text{ ns}$)		0.0003
Thicknesses { Signature Sign	C mirror ^a ($\pm 6 \mu m$) e window ^a ($\pm 23 \mu m$) -strip ^a ($\pm 5 \mu m$)	0.0001 0.000 09 0.000 01
Scintillator only vs $E + \Delta E^{\rm a}$ Scintillator threshold (400 \rightarrow 1000 keV) Scintillator calibration (± 0.4 ch/keV)		0.0001 0.000 03 0.000 01
Total systematics Statistics		0.0013 0.0013
Polarization	1.0088	0.0005
Total	1.0338	0.0019

^aDenotes sources that are related to β^+ scattering.

Impact of A_{eta} Measurement

In terms of CKM unitarity, our A_{β} result improved V_{ud} for this nucleus by nearly a factor of five: $|V_{ud}| = 0.981^{+12}_{-10} \rightarrow 0.9745(25)$.

Impact of A_{eta} Measurement

- In terms of CKM unitarity, our A_{β} result improved V_{ud} for this nucleus by nearly a factor of five: $|V_{ud}| = 0.981^{+12}_{-10} \rightarrow 0.9745(25)$.
- * In terms of right-handed currents, our result is the best nuclear limit: $M_{W_R} > 351~{
 m GeV}$ (in minimal left-right symmetric models)

Impact of A_{eta} Measurement

- In terms of CKM unitarity, our A_{β} result improved V_{ud} for this nucleus by nearly a factor of five: $|V_{ud}| = 0.981^{+12}_{-10} \rightarrow 0.9745(25)$.
- * In terms of right-handed currents, our result is the best nuclear limit: $M_{W_R}>351~{
 m GeV}$ (in minimal left-right symmetric models)
- * Analysis of Fierz and second-class currents (E-dependent observables) to be finished soon

Summary

- The SM is fantastic, but not our "ultimate" theory. There are many exciting avenues to find more a complete model
- Nuclear approach: precision measurement of correlation parameters
- (AC-)MOT + opt. pumping = cool physics
 - * extremely precise, high nuclear polarization: $\langle P \rangle = 99.13(8)\%$
 - * best nuclear limit on $M_{W_R} > 351 \; \mathrm{GeV}$ (at $\zeta = 0$).
 - * on the way to a 0.1% measurement of A_{β} and other (un)polarized correlations

Summary

- The SM is fantastic, but not our "ultimate" theory. There are many exciting avenues to find more a complete model
- Nuclear approach: precision measurement of correlation parameters
- (AC-)MOT + opt. pumping = cool physics
 - * extremely precise, high nuclear polarization: $\langle P \rangle = 99.13(8)\%$
 - * best nuclear limit on $M_{W_R} > 351 \; \mathrm{GeV}$ (at $\zeta = 0$).
 - * on the way to a 0.1% measurement of A_{β} and other (un)polarized correlations
- If you're interested in this (or other nuclear physics structure, astro, EoS, RHIC, reactions, ...) and considering grad school:

Nuclear @ TAMU #12 in 2010, #13 in 2014, now tied for #7 overall and #5 among public universities

The Mad Trappers/Thanks

TAMU: B. Fenker, S. Behling, M. Mehlman, P. Shidling + TAMU/REU undergrads + ENSICAEN interns

TRINAT:

D. Ashery, I. Cohen M. Anholm, G. Gwinner

Funding/Support:

DE-FG02-93ER40773, ECA ER41747

TAMU/Cyclotron Institute

The Mad Trappers/Thanks

TAMU: B. Fenker, S. Behling,

M. Mehlman, P. Shidling

+ TAMU/REU undergrads

TRINAT:

D. Ashery, I. Cohen M. Anholm, G. Gwinner

Funding/Support:

DE-FG02-93ER40773, ECA ER41747

TAMU/Cyclotron Institute