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Overview

Introduction

® Fundamental symmetries
® What is our current understanding?

# How do we test what lies beyond?

The TRIUMF Neutral Atom Trap
@ Angular correlations of polarized 3’K
® Recent results

#® Looking forward
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Scope of fundamental physics

the atom
FrOm the Very smallest ScaleS .
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Scope of fundamental physics
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The Standard Model

All of the known elementary particles and their interactions are
described within the framework of

The Standard Model
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The Standard Model
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The Standard Model

All of the known elementary particles and their interactions are
described within the framework of

The Standard Model

® quantum + special rel = quantum field theory

® Noether’s theorem: symmetry < conservation law

Maxwell’'s egns invariant under o conservation of
changes in vector potential electric charge, q
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The Standard Model

All of the known elementary particles and their interactions are
described within the framework of

The Standard Model

® quantum + special rel = quantum field theory

® Noether’s theorem: symmetry < conservation law

Maxwell’'s egns invariant under o conservation of
changes in vector potential electric charge, q

and there are other symmetries too:
time <« energy
space < momentum
rotations <« angular momentum
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The Standard Model

described within the framework of

The Standard Model

All of the known elementary particles and their interactions are

® quantum + special rel = quantum field theory

® Noether’s theorem: symmetry < conservation law

# 12 elementary particles, 4 fundamental forces

yst ond  grd Q mediator force
g v\ (v (o 0 g strong
"g € 1 T —1 w*
@ 7o } weak
_“E> U c / +2/3
% d s b —-1/3 2 EM
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The Standard Model

All of the known elementary particles and their interactions are
described within the framework of

The Standard Model

® quantum + special rel = quantum field theory
® Noether’s theorem: symmetry < conservation law

# 12 elementary particles, 4 fundamental forces
and @ 1 Higgs boson @

yst ond  grd Q mediator force

ve\ (v (v 0 g strong
1] €5 R E—

} weak

quarks leptons
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That’s all fine and dandy, but. ..

Does the Standard Model work??
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That’s all fine and dandy, but. ..

Does the Standard Model work??

v It predicted the existence of the W=, Z,, g, cand t
~» and now the Higgs!
v’ Itis a renormalizable theory
v GSW = unified the weak force with electromagnetism
v QCD explains quark confinement
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That’s all fine and dandy, but. ..

Does the Standard Model work??

v It predicted the existence of the W=, Z,, g, cand t
~» and now the Higgs!
v’ Itis a renormalizable theory
v GSW = unified the weak force with electromagnetism
v QCD explains quark confinement
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§ . ; { 3 a tantalizing 3.50 discrepancy. ..
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That’s all fine and dandy, but. ..

Does the Standard Model work??

v It predicted the existence of the W=, Z,, g, cand t
~» and now the Higgs!
v’ Itis a renormalizable theory
v GSW = unified the weak force with electromagnetism
v QCD explains quark confinement

S 225 - ;

: 215 - } i a =309 =2

§ . ; { 3 a tantalizing 3.50 discrepancy. ..
~ 5 " :

195 - e 3 (see 2017 PDQG)

S 1185 ] § 2 But, still good to a

X ] [ IT

& 175 SoemenT  theory few parts-per-billion!

P Wow ...thisis -

@ the most precisely tested theory ever conceived! @
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But there are still questions ...

C% parameters values: Does our “ultimate” theory really need 25 arbitrary
constants? Do they change with time?

\g dark matter: SM physics makes up less than 5% of the energy-matter of the
universe!

(2 baryon asymmetry: Why more matter than anti-matter?
@j strong CP: Do axions exist? Fine-tuning?

C% neutrinos: Dirac or Majorana? Mass hierarchy?

‘& fermion generations: Why three families?

(2 weak mixing: Is the CKM matrix unitary?

@J parity violation: Is parity maximally violated in the weak interaction? No
right-handed currents?

C% gravity: Of course, we can’t forget about a quantum description of gravity!
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How we all test the SM

@ colliders: CERN, SLAC, FNAL, BNL, KEK, DESY ...

#® nuclear physics: traps, exotic beams, neutron, EDMs, 0v38, ...

® neutrinos: sterile vs, oscillations, coherent scattering, ...

® cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, ...
® muon decay: Michel parameters: p, §,n, and &

® atomic physics: anapole moment, spectroscopy, . ..
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How we all test the SM

@ colliders: CERN, SLAC, FNAL, BNL, KEK, DESY ...

#® nuclear physics: traps, exotic beams, neutron, EDMs, 0v38, ...

® neutrinos: sterile vs, oscillations, coherent scattering, ...

® cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, ...
® muon decay: Michel parameters: p, §,n, and &

® atomic physics: anapole moment, spectroscopy, . ..

All of these techniques are complementary and important

e different experiments probe different (new) physics
e if signal seen, cross-checks crucial!
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How we all test the SM

@ colliders: CERN, SLAC, FNAL, BNL, KEK, DESY ...

#® nuclear physics: traps, exotic beams, neutron, EDMs, 0v38, ...

® neutrinos: sterile vs, oscillations, coherent scattering, ...

® cosmology & astrophysics: SN1987a, Big Bang nucleosynthesis, ...
® muon decay: Michel parameters: p, §,n, and &

® atomic physics: anapole moment, spectroscopy, . ..

All of these techniques are complementary and important

e different experiments probe different (new) physics
e if signal seen, cross-checks crucial!

often they are interdisciplinary I

(which makes it extra fun!)
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How does high-energy physics test the SM?

Colliders: CERN, SLAC, FNAL, BNL, KEK, DESY, ....

‘ direct search of particles I

Compact Muon Solenoid
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How does high-energy physics test the SM?

Colliders: CERN, SLAC, FNAL, BNL, KEK, DESY, ....

‘ direct search of particles I

CMS

Compact Muon Solenoid

# large multi-national collabs
@ billion $ price-tags (&Y
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How does nuclear physics test the SM?
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How does nuclear physics test the SM?

Rubes By Leigh Rubin

imany 4¥e o007 o
up taespnds srowmal

FLERERETRY
TEIqma

Overcoming temptation, David opted
against the obvious, unsportsmanlike

cheap shot.
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How does nuclear physics test the SM?

Nuclear physics: radioactive ion beam facilities

‘ indirect search via precision measurements I

Nuclear Landscape

A less than 300 stable | 4‘ o

= \
terra incognita

known nuclei

proton number Z

iz
neutron number N
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Nuclear physics: radioactive ion beam facilities

‘ indirect search via precision measurements I

How does nuclear physics test the SM?
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How does nuclear physics test the SM?

Nuclear physics: radioactive ion beam facilities

‘ indirect search via precision measurements I

Cyclotron Institute

M | s
Nuclear Landscape
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v’ smaller collaborations
v/ contribute to all aspects 4%,
v’ “table-top” physics o
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A primer in 3 decay

@ Initially quite a mystery:

*- why does the “3” particle has a continuous energy spectrum? is
angular momentum not conserved?

¥ what force causes it?
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A primer in 3 decay

@ Initially quite a mystery:

*- why does the “3” particle has a continuous energy spectrum? is
angular momentum not conserved?

~» Pauli explains with a new spin-1/2 particle, the neutrino
¥- what force causes it?

~ Fermi introduces a new force in his theory of 3 decay
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A primer in 3 decay

@ Initially quite a mystery:
*- why does the “3” particle has a continuous energy spectrum? is
angular momentum not conserved?

~» Pauli explains with a new spin-1/2 particle, the neutrino
¥- what force causes it?

~ Fermi introduces a new force in his theory of 3 decay

#® Revolutionary idea and discovery: unlike the other forces, parity is
not conserved by the weak interaction!
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A primer in 3 decay

@ Initially quite a mystery:
*- why does the “3” particle has a continuous energy spectrum? is
angular momentum not conserved?

~» Pauli explains with a new spin-1/2 particle, the neutrino
*- what force causes it?

~ Fermi introduces a new force in his theory of 3 decay
#® Revolutionary idea and discovery: unlike the other forces, parity is
not conserved by the weak interaction!

# Now understood as a (V' — A) interaction at the quark level mediated
by the W= boson:
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°
Built upon maximal parity violation:

Hgv = GrVuae( v, — s )ve u(* — 5 )d
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°

Built upon maximal parity violation: Vector: P|U) — —|)

T
Hgy = GFVudE(@ — VY5 ) Ve ﬂ(@— Vs )d
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°

Built upon maximal parity violation: Vector: P|U) — —|)

: () /@ (@) - G"»)
A = M.C. Escher reptiles Heoy = GpV, € _ v, U _ d
~_—

PA=+A

! Axial-vector: P|U) = +|¥)

-
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°
Built upon maximal parity violation: Vector: P[¥) = —|0)

O IO-
Hoyi = GpVyge — Ve U — d
~_—

Axial-vector: P|U) = +|¥)

Low-energy limit of a deeper SU(2)r xSU(2);, xU(1) theory?
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°
Built upon maximal parity violation: Vector: P[¥) = —|0)

O IO-
Hoyi = GpVyge — Ve U — d
~_—

Axial-vector: P|U) = +|¥)

Low-energy limit of a deeper SU(2)r xSU(2);, xU(1) theory?
= 3 more vector bosons: W5, Z'

Simplest extensions: “manifest left-right symmetric” models
~ only 2 new parameters: W5 mass and a mixing angle, ¢:

|Wr) = cos (|W71) — sin ¢|Ws)
[Wg) = sin (|W1) + cos (|Ws)
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Extensions to the SM predict right-handed currents

The electroweak interaction: SU(2); xU(1) = W;,Z°
Built upon maximal parity violation: Vector: P[¥) = —|0)

O IO-
Hoyi = GpVyge — Ve U — d
~_—

Axial-vector: P|U) = +|¥)

Low-energy limit of a deeper SU(2)r xSU(2);, xU(1) theory?
= 3 more vector bosons: W5, Z'

Simplest extensions: “manifest left-right symmetric” models
~ only 2 new parameters: W5 mass and a mixing angle, ¢:

|Wr) = cos (|W71) — sin ¢|Ws)
[Wr) = sin ([W7) + cos (|Wa)

The existence of RHCs would affect the
values of 3 decay parameters
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How do I test the SM?

#® Begin by looking at the rate for 5 decay

basic decay rate
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

B—v correlation  Fierz term

5 Ve f 0 /_/\
W |t o PP Ime
— v
dE,dQ.dS,, VE.E, E.
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

B—v correlation
_/\

5 Ve _ IR
d°W 1+ a De * Pu.
dE.dQ.dSY, E.E,,
vector
D g
L ovPHCy P
Br = 1Cv 2T, )2
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

B—v correlation
/N

p_t:z ) ]5)1/e
EeEy,

Ve

1+ agy

vector

i -

W
dE.dQ.dS),
scalar
~— seo—"
%
\
_ —ICs|? —1C%)?
By = TICsPHICLP

|Gy P+|C 2
Bv = 1Oy 2H O 2

a
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

B—v correlation

A\

Ve

1+ agy

W
dE.dQ.dQ,
scalar
~— seo—"
&
\
_ =052 = 0%
By = TICsPHICLP

_CvPHICY P - 1Cs]? — 16

ag

p_t:z ) ]5)1/e
EeEy,

vector

i >

_ Oy PHCy
v = Oy EHIC,

aAgy — / r 177
[Cv[* +[Cy 2 +[Cs]? + |2
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

d°W
dE.d.dSY,,
(I) Pe Dy De X Dy
—l_—' Aﬁ——l_BV——l_D _l_'°'
I E. E, E.E,
N 7 o ~~ _J . ~~ _J
£ asym v asym T-violating
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

d°W
dE.d.dSY,,
(1) Pe Py | Pe X Dy
+ —-|Ag—=—+B,—+D + ...
£ asym v asym T-violating
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

d°W B
dE.d.dS},, -
(I) Pe
ML ALEE
T T 5L,
N——
£ asym

_9 3(14z2 1—y?
Eg. Ag= ng [(1_1/’9) 5E1+y2§ - §E1+§2§]
where © ~ (ML/MR)2 — ¢

and y ~ (ML/MR)2 + ¢
are right-handed current parameters that are

: — CaMgr
zero in the SM, and p = -5FE-
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

Swo
dE.dQdQ,

_9 3(14z2 1—y?
Eg. Ag= ng [(1_559) 5E1+y2§ - §E1+52§]
where r ~ (ML/MR)2 — ¢

and y ~ (ML/MR)2 + ¢
are right-handed current parameters that are

. — CaMgr
zero in the SM, and p = -5FE-
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How do I test the SM?

@ Expand to the often-quoted angular distribution of the decay:
(Jackson, Treiman and Wyld, Phys Rev 106 and Nucl Phys 4, 1957)

Swo
dE.dQdQ,

N Goal must be < 0.1% to complement LHC 1
be Naviliat-Cungié and Gonzalez-Alonso, Ann. Phys. 525, 600 (2013)
Cirigliano, Gonzalez-Alonso and Graesser, JHEP 1302, 046 (2013)
Vos, Wilschut and Timmermans, RMP 87, 1483 (2015) )
g zero in the SM, and p = Z7¢T
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How to acheive our goal?

Z\.\/g ® Perform a (3 decay experiment on
\\%/%; short-lived isotopes
e
1%
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Precoil

How to acheive our goal?

® Perform a [ decay experiment on
short-lived isotopes

® Make a precision measurement of
the angular correlation parameters
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Precoil

How to acheive our goal?

® Perform a [ decay experiment on
short-lived isotopes

® Make a precision measurement of
the angular correlation parameters

# Compare the SM predictions to obser-
vations
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Precoil

How to acheive our goal?

® Perform a [ decay experiment on
short-lived isotopes

® Make a precision measurement of
the angular correlation parameters

# Compare the SM predictions to obser-
vations

® Look for deviations as an indication of
new physics

Dan Melconian
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How to acheive our goal?

‘d: /.
“\\\‘\?3 ® Perform a ( decay experiment on

\U, \// . .
\\%/%; short-lived isotopes
(&
W
1%

® Make a precision measurement of
the angular correlation parameters

Precoil
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C.S. Wu’s experiment — Parity violation

10 ecm—
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Fic. 1. Schematic drawing of the lower part of the cryostat. TEMPS (minutes)
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C.S. Wu’s experiment — Parity violation

41,5 cm

MUTUAL INDUCTANCE
THERMOMETER COILS

SPECIME

HOUSING OF
CeMg NITRATE

LUCITE ROD
PUMPING TUBE FOR
LALLM _CDACE

® SO much scattering!
#® low polarization

#® short relaxation time
® poor sample purity

#® pain to flip the spin

& need |Ong t]_/2 /./:\ IA_EYMFT.-IETR‘YT ru.' ﬂluhﬁE L ‘]
HEIGHT 10V) l

-.'[.':; | o 'a: !
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Fic. 1. Schematic drawing of the lower part of the cryostat. TEMFS (minutes)
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C.S. Wu’s experiment — Parity violation

o LUCITE ROD
(‘—l/ PUMPING TUBE FOR
Nal —\ACLIIA _CQDACE
® SO much scattering!
#® low polarization
41,5 cm

@ short relaxation time

® poor sample purity

#® pain to flip the spin

MUTUAL INDUCTANCE ® need Iong t1/2 A T T T
THERMOMETER COILS A B ASYMMETRY (AT PuLSE

SPECIME i = |

e MITRATE -— . . s
Fast-forward 70 yrs ... :
Measure same correlation, Ag, in 3’K at | J

| —
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i 1. Schematic TRIUMF using modern techniques
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The 3+-decay of 3’ K

Almost as simple as 07— 07

( 1225(7)s  3/2° % isobaric analogue decay
K gt = strong branch to g.s.
3/2* 0.022%
|
5/2+ 2.07(11)%
—_— —
3/2* 97.99(14)%
|}
37AI‘
' Y,
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The 3+-decay of 3’ K

Almost as simple as 07— 07

( 1225(7)s  3/2¢ = isobaric analogue decay
WK Bt = strong branch to g.s.
32 0.022% .
_ 5/2¢ _ 2. 07(11)% b polarization/alignment
<& mixed Fermi/Gamow-Teller
= need p=GaMgr/GyvMFp
(Y 32 97.99(14)% to get SM prediction for correlation
. 37 Ar parameters

_/

Get p from the comparative half-life: | p

0T —07T
) 2Ft0
Ft

—1
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The 3+-decay of 3’ K

Almost as simple as 07— 07

( 1225(7)s  3/2¢ = isobaric analogue decay
K gt = strong branch to g.s.
3/2+< 0.022% o ] . ]
3 512 _ 2.07(11)% b polarization/alignment
<& mixed Fermi/Gamow-Teller
= need p=GaMgr/GyvMFp
Y 3/2* 97.99(14)% to get SM prediction for correlation
- = parameters
\_ 18 ) n n
. . 2 F 0" =0
Get p from the comparative half-life: | p? = o 1
Opc: +0.003% |
BR: £0.14% » Ft =4605(8) = p = 0.5768(21)
t1/2: +0.08%
J
= A%M = —0.5719(7), predicted to <0.1% v
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Thank you, AMO physicists!!

Atomic methods have opened up a new vista in precision work
and provide the ability to push g decay measurements to < 0.1%

#® laser-cooling and trapping (magneto-optical traps)

#® sub-level state manipulation (optical pumping)

#® characterization/diagnostics (photoionization)
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Thank you, AMO physicists!!

Atomic methods have opened up a new vista in precision work
and provide the ability to push g decay measurements to < 0.1%

#® laser-cooling and trapping (magneto-optical traps)

Ion » beam ~— 15 cm——

A\ — —1 2
\

Collection chamber Detection chamber
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Thank you, AMO physicists!!

Atomic methods have opened up a new vista in precision work
and provide the ability to push g decay measurements to < 0.1%

#® laser-cooling and trapping (magneto-optical traps)

Ion bearr|1 ~— 15 cm——

/
Z#

7

4

Y 1
~ ~ “Electrostatic
74
< - hoops
. Neutralize Pcmt#
1 ( B detector

Traps provide a backing-free, very cold (< 1 mK), localized
(~ 1 mm?) source of isomerically-selective, short-lived
radioactive atoms
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Thank you, AMO physicists!!

Atomic methods have opened up a new vista in precision work
and provide the ability to push g decay measurements to < 0.1%

#® laser-cooling and trapping (magneto-optical traps)

Ion » beam ~— 15 cm——
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Traps provide a backing-free, very cold (< 1 mK), localized
(~ 1 mm?) source of isomerically-selective, short-lived
radioactive atoms
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The TRINAT lab
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The measurement chamber

Laser
light

Electrostatic

== ==
hoops \\

Electron MCP

BC408 40%x40x0.3 mm?
scintillator Si-strip detector

’ / < re-entrant flange

and collimator

dOIN 11039

Mirror with (Anti-)
275 pum-thick SiC T Helmholtz
substrate coils

229 pm-thick Be foil
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Outline of polarized experiment
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Outline of polarized experiment

Helmholiz
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Outline of polarized experiment
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Outline of polarized experiment
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Atomic measurement of P

Deduce P based on a model of the excited state populations

polarization
- b B 14 alignment
Pyl :
9
0
N
ke
J & <
L R -
S1/2 OE i fluorescence
4——*—

mp = —2 —1 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
optical pumping time [ms]
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Atomic measurement of P

Deduce P based on a model of the excited state populations

polarization

S,
\

E

"polarized"” times

alignment

fluorescence

I
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4
i
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RRS
1

R
| ’\
—

0.0 0.2 0.4

0.6 0.8 1.0 12

mprp = —2 2
optical pumping time [ms]
" 20 ] ] ] ] ] ] ] ]
4 S, = 0.9958
~ B, , = 0.028(6)(8)
~. 15 7 -
) x2/781 = 1.098
-E L AL 12
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)]
5 \
g 2 m ‘
-8 "J“l“M | |l I { ‘ TR |L\|| l |!u luL I\E\ I ‘ ‘IU HIJHHI\ 1 |l|J=I i I\ H mlu H] I|J| |I\|‘U|\ lu | l[\nl I
A g ] e i bR e & § e w1 i
0 500 1000 1500 2000
time after MOT off [usec]
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Atomic measurement of P

Deduce P based on a model of the excited state populations

polarization
- b B 14 alignment
Pyl :
e
0
N
k
/ & 3
L R 2
S1/2 Oé i fluorescence
4——*—

mp = —2 —1 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0 12
optical pumping time [ms]

L L L L | L L L L | L L L L | L L L L |
20 17 |

1 < __— NoasRg

= (Poua) = 99.13(8)% <«
and

3
N
~
2
: (Tatign) = —0.9767(25)
g
@)
3
N
o,

Fenker et al., New J. Phys. 18, 073028 (2016)
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Energy Spectrum Compared to GEANT4

400 { i il t Data
3 = AR I e TR T — GEANT4
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Note: there is ho background subtraction!
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Asymmetry Measurement (briefly)

1500 ’ Upper ] Lower i
- -
g _ O
o 1000 - -
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72
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Scintillator energy [MeV]
Dan Melconian Joint APS/AAPT Meeting —22

TTTTTTTTTTTTTTTTTT

March 23, 2018



Asymmetry Measurement (briefly)
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1 — S(Ee)

T (L 7“;' .
Aobs(Ee) = 1+ S(E.) where S(E,) = \/ 1 (Fe)ry (Fe)

(Ee)ry (Ee)
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Asymmetry Measurement (briefly)
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Asymmetry Measurement (briefly)
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PHYSICAL REVIEW LETTERS 120, 062502 (2018) i
D
Precision Measurement of the f Asymmetry in Spin-Polarized 3’K Decay
B. Fvenker,]’2 A. Gorelov,3 D. Melconian,]‘z‘* J. A. Behr,3 M. Anholm,B’4 D. Ashery,5
R.S. Behling,]’6 L. Cohen,5 L. Craiciu,3 G. Gwinner,4 J. McNeil,m M. Mehlman,l’2 K. Olchanski,3
P.D. Shidling,] S. Smale,3 and C.L. Warner
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Ag Error Budget

Source Correction Uncertainty
Systematics
Background 1.0014 0.0008
/ scattering” 1.0230 0.0007
position (typ < +20 um) 0.0004

Trap (67 vso~ ){ sail velocity (typ < £30 um/ms) 0.0005
temperature (typ < +0.2 mK) 0.0001

radius®(15.5722 mm) 0.0004
Si-strip{ energy agreement (+36 — +50) 0.0002
threshold (60 — 40 keV) 0.0001
Shakeoff electron TOF region (3.8 — 4.6 ns) 0.0003
SiC mirror® (+6 pm) 0.0001
Thicknesses< Be window® (£23 um) 0.000 09
Si-strip® (£5 um) 0.000 01
Scintillator only vs E + AE? 0.0001
Scintillator threshold (400 — 1000 keV) 0.000 03
Scintillator calibration (£0.4 ch/keV) 0.000 01
Total systematics 0.0013
Statistics 0.0013
Polarization 1.0088 0.0005
Total 1.0338 0.0019

“Denotes sources that are related to f* scattering.
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Impact of Az Measurement

# [n terms of CKM unitarity, our Az result improved V,,4 for this nucleus
by nearly a factor of five: |V,4| = 0.981772 — 0.9745(25).
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] : 1
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A of parent nucleus
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Impact of Az Measurement

# [n terms of CKM unitarity, our Az result improved V,,4 for this nucleus
by nearly a factor of five: |V,4| = 0.981772 — 0.9745(25).

@ In terms of right-handed currents, our result is the best nuclear limit:

My, > 351 GeV (in minimal left-right symmetric models)
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Impact of Az Measurement

# [n terms of CKM unitarity, our Az result improved V,,4 for this nucleus
by nearly a factor of five: |V,4| = 0.981772 — 0.9745(25).

@ In terms of right-handed currents, our result is the best nuclear limit:
My, > 351 GeV (in minimal left-right symmetric models)

@ Analysis of Fierz and second-class currents (E-dependent

TEXAS A&M UNIVERSITY

observables) to be finished soon
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Summary

® The SM is fantastic, but not our “ultimate” theory. There are many
exciting avenues to find more a complete model

# Nuclear approach: precision measurement of correlation
parameters

® (AC-)MOT + opt. pumping = cool physics
*- extremely precise, high nuclear polarization: (P) = 99.13(8)%
*- best nuclear limit on My, > 351 GeV (at ¢ = 0).

*- on the way to a 0.1% measurement of Ag and other
(un)polarized correlations

Dan Melconian W CYCLOTRON INSTITUTE Joint APS/AAPT Meeting ~-25
po || s AU IS MarCh 23, 2018



Summary

® The SM is fantastic, but not our “ultimate” theory. There are many
exciting avenues to find more a complete model

# Nuclear approach: precision measurement of correlation
parameters

® (AC-)MOT + opt. pumping = cool physics
*- extremely precise, high nuclear polarization: (P) = 99.13(8)%
*- best nuclear limit on My, > 351 GeV (at ¢ = 0).

*- on the way to a 0.1% measurement of Ag and other
(un)polarized correlations

@ If you're interested in this (or other nuclear physics — structure, astro,
EoS, RHIC, reactions, ...) and considering grad school:

BEST  Nuclear @ TAMU #12in 2010, #13 in 2014, now tied

GRAD SCHOOLS
for #7 overall and #5 among public universities
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The Mad Trappers/Thanks

TAMU: B. Fenker, S. Behling,
M. Mehlman, P. Shidling
+ TAMU/REU undergrads
+ ENSICAEN interns

TRINAT:
2 TRIUMF  J.A. Behr, J. McNeil, A. Gorelov, K. Olchanski, . ..

% D. Ashery, |. Cohen

Funding/Support: @) DE-FG02-93ER40773, ECA ER41747
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