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Overview

Dan Melconian

1. Fundamental symmetries

what is our current understanding ?
how do we test what lies beyond ?

2. TAMU Penning Trap

physics of superallowed β decay
ion trapping of proton-rich nuclei at T-REX

3. TRIUMF Neutral Atom Trap

angular correlations of polarized 37K
preliminary results of a recent run
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✔ it predicted the existence of the W ±, Z◦, g, c and t
Ã and now the Higgs!✔ is a renormalizable theory

✔ GSW ⇒ unified the weak force with electromagnetism
✔ QCD explains quark confinement

a
µ
×

1
01

0
−

1
1
6
5
9
0
0
0 ±1 part-per- million !!

(PRL 92 (2004) 161802)

aµ
≡

1
2
(g − 2)

Wow . . . this is

the most precisely tested theory ever conceived!



But there are still questions . . .

Dan Melconian Dec 3, 2013
LASNPA

– 3

parameters values : does our “ultimate” theory really need 25 arbi-
trary constants? Do they change with time?

dark matter : SM physics makes up only 4% of the energy-matter of
the universe!

baryon asymmetry : why more matter than anti-matter ?

strong CP: do axions exist? Fine-tuning ?

neutrinos : Dirac or Majorana ? Mass hierarchy ?

fermion generations : why three families?

weak mixing : Is the CKM matrix unitary ?

parity violation : is parity maximally violated in the weak interaction?
No right-handed currents?

gravity : of course can’t forget about a quantum description of gravity !
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colliders : CERN, SLAC, FNAL, BNL, KEK, DESY . . .

nuclear physics : traps, exotic beams, neutron, EDMs, 0νββ, . . .

cosmology & astrophysics : SN1987a, Big Bang nucleosynthesis, . . .

muon decay : Michel parameters: ρ, δ, η, and ξ

atomic physics : anapole moment, spectroscopy, . . .



How do physicists test the SM?

Dan Melconian Dec 3, 2013
LASNPA

– 4

colliders : CERN, SLAC, FNAL, BNL, KEK, DESY . . .

nuclear physics : traps, exotic beams, neutron, EDMs, 0νββ, . . .

cosmology & astrophysics : SN1987a, Big Bang nucleosynthesis, . . .

muon decay : Michel parameters: ρ, δ, η, and ξ

atomic physics : anapole moment, spectroscopy, . . .

all of these techniques are complementary and important

• different experiments probe different (new) physics
• if signal seen, cross-checks crucial!

often they are interdisciplinary

(fun and a great basis for graduate students!)
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colliders : CERN, SLAC, FNAL, BNL, KEK, DESY, . . . .

direct search of particles

27 km

“go big or go home”
large multi-national collabs
billion $ price-tags
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nuclear physics : radioactive ion beam facilities
indirect search via precision measurements

✔ smaller collaborations
✔ contribute to all aspects
✔ “table-top” physics
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perform a β decay experiment on
short-lived isotopes

make a precision measurement
of the angular correlation param-
eters

compare the SM predictions to
observations

look for deviations as an indica-
tion of new physics
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Test SM via the angular distribution of β decay: the often-quoted
Jackson, Treiman and Wyld (Phys Rev 106 and Nucl Phys 4, 1957)
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mediating the weak interaction

⇒ sensitive to new physics ⇐
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are right-handed current parameters
that are zero in the SM

β-decay parameters depend on the currents
mediating the weak interaction

⇒ sensitive to new physics ⇐

Goal must be 0.1% to complement LHC

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007)
and Cirigliano, González-Alonso and Graesser, JHEP 1302 (2013)
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Positron-Neutrino Correlation in the 0
1

! 0
1 Decay of32

Ar

E. G. Adelberger,1 C. Ortiz,2 A. Garcı́a,2 H. E. Swanson,1 M. Beck,1 O. Tengblad,3 M. J. G. Borge,3 I. Martel,4

H. Bichsel,1 and the ISOLDE Collaboration4

1Department of Physics, University of Washington, Seattle, Washington 98195-1560
2Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

3Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
4EP Division, CERN, Geneva, Switzerland CH-1211

(Received 24 February 1999)

The positron-neutrino correlation in the 0
1
! 0

1 b decay of 32Ar was measured at ISOLDE by
analyzing the effect of lepton recoil on the shape of the narrow proton group following the superallowed
decay. Our result is consistent with the standard model prediction. For vanishing Fierz interference we
find a ­ 0.9989 6 0.0052 6 0.0039, which yields improved constraints on scalar weak interactions.

Doppler shape of delayed
proton depends on ~pe · ~pν !
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will be the world’s most open-geometry ion trap!
uniquely suited for studying β-delayed proton decays:

β − ν correlations, ft values/Vud

also amendable to mass measurements, EC studies, laser
spectroscopy, . . . 〈insert your idea here〉

re−commissioned
K150 cyclotron

production
target

BigSol
separator multi−RFQ

heavy−ion guide

TAMUTRAP
to charge−breeder

and K500 cyclotron

ortho−TOF

gas−catcher
ANL−type
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Mehlman et al., NIM A712, 9 (2013)
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how do we test what lies beyond ?

2. TAMU Penning Trap

physics of superallowed β decay
ion trapping of proton-rich nuclei at T-REX

3. TRIUMF Neutral Atom Trap

angular correlations of polarized 37K
preliminary results of a recent run
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Almost as simple as the neutron:

5/2+

3/2+

3/2+

37
18Ar

1.225(7) s

β+37
19K

3/2+ 0.022%

2.07(11)%

97.99(14)%

isobaric analogue decay

strong branch to g.s.

polarization/alignment
mixed Fermi/Gamow-Teller

⇒ need ρ ≡ GAMGT/GV MF

to get SM prediction for correla-
tion parameters

get ρ from the comparative half-life: ρ2 =
2Ft0

+→0+

Ft
− 1

QEC : ±0.003%

BR: ±0.14%







Ft = 4562(28) ⇒

t1/2: ±0.57%
ρ = 0.5874(71)

The lifetime limits the Ft value

and hence precision of ρ

and hence the SM predictions

of the correlation parameters



Measuring the lifetime at the CI
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aluminum
degraders

BC404
scintillator

4π gas
prop chmbr

MARS
beamline

aluminized
Mylar tape

RIB

38Ar (p, 2n)37K
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Improving the lifetime
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nearly a 10× improvement: t1/2 = 1236.51 ± 0.47 ± 0.83 ms

⇒ ∆Ft = 0.62% −→ 0.18%

and ∆ρ = 1.2% −→ 0.4%

P. Shidling et al., in preparation



Angular distribution of a 3
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dW ∼ 1 + aβν
~pe·~pν

EeEν

+ bΓ
m

Ee

+
~I

I
·

[

Aβ

~pe

Ee

+ Bν

~pν

Eν

+ D
~pe×~pν

EeEν

]

Correlation SM prediction
β − ν correlation: aβν = 0.6580(61)

Fierz interference parameter: b = 0 (sensitive to scalars and tensors)

β asymmetry: Aβ = −0.5739(21)

ν asymmetry: Bν = −0.7791(58)

Time-violating D coefficient: D = 0 (sensitive to imaginary couplings)

Precision measurements of these correlations to . 0.1%
complement collider experiments and test the SM

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007)
and Cirigliano, González-Alonso and Graesser, JHEP 1302 (2013)
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dW ∼ 1 + aβν
~pe·~pν

EeEν

+ bΓ
m

Ee

+
~I

I
·

[

Aβ

~pe

Ee

+ Bν

~pν

Eν

+ D
~pe×~pν

EeEν

]

Correlation SM prediction
β − ν correlation: aβν = 0.6580(61) → 0.6668(18)

Fierz interference parameter: b = 0 (sensitive to scalars and tensors)

β asymmetry: Aβ = −0.5739(21) → −0.5719(7)

ν asymmetry: Bν = −0.7791(58) → −0.7703(18)

Time-violating D coefficient: D = 0 (sensitive to imaginary couplings)

Precision measurements of these correlations to . 0.1%
complement collider experiments and test the SM

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007)
and Cirigliano, González-Alonso and Graesser, JHEP 1302 (2013)
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Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

sub-level state manipulation (optical pumping)

characterization/diagnostics (photoionization)
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Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

Traps provide a backing-free , very cold (. 1 mK),
localized (∼ 1 mm3) source of isomerically-selective ,

short-lived radioactive atoms

Detect ~pβ and ~precoil

⇒ deduce ~pν event-by-event!! ⇐



The TRINAT lab
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The new chamber
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Shake-off e− detection
Better control of OP beams
Bquad → BOP quickly: AC-MOT
(Harvery & Murray, PRL 101 (2008))
Increased β/recoil solid angles
Stronger E-field

...

500µm thick
Be foil

electrostatic
hoops

(anti)Helmholtz
coils

BC408

re
co

il
M

C
P

electron
M

C
P

40x40mm 2x300µm

100µm thick
Si-coated

mirror BB1 Si-strip
detector
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anti-
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20mF −2=

Helmholtz

D1
OP

~F = ~I + ~J

P1/2

S1/2σ±

1−1
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E-field

M
C

P
K +

Helmholtz

D1
OP

photoionization

20mF −2=

~F = ~I + ~J

P1/2

S1/2σ±

355 nm

1−1
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P1/2

mF

S1/2

0 2

σ±

−2= −1 1

deduce P based on a model of the ex-
cited state populations:
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P1/2

mF

S1/2

0 2

σ±

−2= −1 1

deduce P based on a model of the ex-
cited state populations:

⇒ Pnucl = 96.74 ± 0.53+0.19
−0.73



The cloud is better controlled now!

Dan Melconian Dec 3, 2013
LASNPA

– 24

old system:
retroreflected beams

kludged “Helmholtz” coils

eddy currents
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old system:
retroreflected beams

kludged “Helmholtz” coils

eddy currents

Dec 2012:
beams balanced

anti-Helmholtz → Helmholtz
well-defined fields

ac-MOT ⇒ fast switching and
low eddy currents

much more stable!
lower cloud temperature!



Scintillator spectra — Fall 2012
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Just the raw data; a slight lower-energy cut to get rid of 511s

E
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Requiring a ∆E coincidence ⇒ remove γs

∆E

E
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Requiring a shake-off e− ⇒ decay occured from trap!

shakeoff

e−

E



Scintillator spectra — Fall 2012
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Put in all the basic analysis cuts ⇒ clean spectrum!!

shakeoff

e−

∆E

E
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Comparison with GEANT4 simulation is very good!
Much higher asymmetry observed compared to 1st attempt!
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Summary

Dan Melconian

SM is fantastic, but not our “ultimate” theory

many exciting avenues to find more a complete model

nuclear approach: precision measurement of correlation
parameters

Penning trap + RIB CI = cool physics

(AC-)MOT + opt. pumping = cool physics



The Mad Trappers/Thanks
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TAMU: Spencer Behling, Mike Mehlman,
Ben Fenker, Praveen Shidling

+ TAMU/REU undergrads
LASNPA organizers

TRINAT: M. Anholm, J.A. Behr, A. Gorelov,
L. Kurchananov, K. Olchanski, K.P. Jackson

D. Ashery G. Gwinner
Funding/Support:

DOE DE-FG02-93ER40773, Early Career ER41747

TAMU/Cyclotron Institute
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