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1. Fundamental symmetries

what is our current understanding ?
how do we test what lies beyond ?

2. TAMU Penning Trap

physics of superallowed β decay
ion trapping of proton-rich nuclei at T-REX

3. TRIUMF Neutral Atom Trap

angular correlations of polarized 37K
preliminary results of a recent run
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All of the known elementary particles and their interactions
are described within the framework of

The Standard Model

quantum + special rel ⇒ quantum field theory
Noether’s theorem: symmetry ⇔ conservation law

Maxwell’s eqns invariant under
changes in vector potential

⇔
conservation of

electric charge, q

and there are other symmetries too:
time ⇔ energy

space ⇔ momentum
rotations ⇔ angular momentum

...
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All of the known elementary particles and their interactions
are described within the framework of

The Standard Model

quantum + special rel ⇒ quantum field theory
Noether’s theorem: symmetry ⇔ conservation law

SU(3)
︸ ︷︷ ︸

strong

×

electroweak
︷ ︸︸ ︷

SU(2)L
︸ ︷︷ ︸

weak

×U(1)
︸︷︷︸

E &M

+ (classical general rel)
︸ ︷︷ ︸

gravity
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All of the known elementary particles and their interactions
are described within the framework of

The Standard Model

quantum + special rel ⇒ quantum field theory
Noether’s theorem: symmetry ⇔ conservation law
SU(3) × SU(2)L × U(1): strong + electroweak
12 elementary particles , 4 fundamental forces
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All of the known elementary particles and their interactions
are described within the framework of

The Standard Modelnew

quantum + special rel ⇒ quantum field theory
Noether’s theorem: symmetry ⇔ conservation law
SU(3) × SU(2)L × U(1): strong + electroweak
12 elementary particles , 4 fundamental forces
and (at least) 1 Higgs boson
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does the Standard Model work??
✔ it predicted the existence of the W ±, Z◦, g, c and t

Ã and now the Higgs!
✔ is a renormalizable theory
✔ GSW ⇒ unified the weak force with electromagnetism
✔ QCD explains quark confinement

a
µ
×

1
0

1
0
−

1
1
6
5
9
0
0
0

±1 part-per- million !!
(PRL 92 (2004) 161802)

aµ ≡ 1
2(g − 2)

Wow . . . this is
the most precisely tested theory ever conceived!
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parameters values : does our “ultimate” theory really need 25 arbi-
trary constants? Do they change with time?

dark matter : SM physics makes up only 4% of the energy-matter of
the universe!

baryon asymmetry : why more matter than anti-matter ?

strong CP: do axions exist? Fine-tuning ?

neutrinos : Dirac or Majorana ? Mass hierarchy ?

fermion generations : why three families?

weak mixing : Is the CKM matrix unitary ?

parity violation : is parity maximally violated in the weak interaction?
No right-handed currents?

gravity : of course can’t forget about a quantum description of gravity !
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At our energy scales, we see four distinct forces . . .
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But these coupling ‘constants’ aren’t really constant : αi → αi(Q)

→ electromagnetic and weak strengths equal at ≈ 1013 GeV

→ strong force gets weaker, but doesn’t unify with EW. . . .
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But what if there is new physics we haven’t seen yet?

the running of the coupling constants would be affected;
maybe they converge at some GUT scale?

Are the three theories of E & M, weak and strong
interactions all low-energy limits of

one unifying theory?



How do we test the SM?

Dan Melconian Nov 20, 2013
NSCL

– 7

colliders : CERN, SLAC, FNAL, BNL, KEK, DESY . . .

nuclear physics : traps, exotic beams, neutron, EDMs, 0νββ, . . .

cosmology & astrophysics : SN1987a, Big Bang nucleosynthesis, . . .

muon decay : Michel parameters: ρ, δ, η, and ξ

atomic physics : anapole moment, spectroscopy, . . .
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nuclear physics : traps, exotic beams, neutron, EDMs, 0νββ, . . .

cosmology & astrophysics : SN1987a, Big Bang nucleosynthesis, . . .

muon decay : Michel parameters: ρ, δ, η, and ξ

atomic physics : anapole moment, spectroscopy, . . .

all of these techniques are complementary and important

• different experiments probe different (new) physics
• if signal seen, cross-checks crucial!

often they are interdisciplinary

(fun and a great basis for graduate students!)
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colliders : CERN, SLAC, FNAL, BNL, KEK, DESY, . . . .

direct search of particles

27 km

“go big or go home”
large multi-national collabs
billion $ price-tags
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nuclear physics : radioactive ion beam facilities
indirect search via precision measurements

✔ smaller collaborations
✔ contribute to all aspects
✔ “table-top” physics
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Via the angular distribution of the decay: the often-quoted
Jackson, Treiman and Wyld (Phys Rev 106 and Nucl Phys 4, 1957)

d5W

dEedΩedΩνe

=

basic decay rate
︷ ︸︸ ︷

G2
F |Vud|

2

(2π)5
peEe(A◦ − Ee)

2ξ
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Jackson, Treiman and Wyld (Phys Rev 106 and Nucl Phys 4, 1957)
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Via the angular distribution of the decay: the often-quoted
Jackson, Treiman and Wyld (Phys Rev 106 and Nucl Phys 4, 1957)
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β-decay parameters depend on the currents
mediating the weak interaction

⇒ sensitive to new physics ⇐
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θei
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d
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d
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W
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ν

perform a β decay experiment on
short-lived isotopes

make a precision measurement
of the angular correlation param-
eters

compare the SM predictions to
observations

look for deviations as an indica-
tion of new physics

perform a nuclear measurement

using atomic techniques
to test high-energy theories!
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so much scattering!
low polarization
short relaxation time
poor sample purity
pain to flip the spin
need long t1/2
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Many groups around the world realize the potential of using traps
for precision weak interaction studies

atom traps ion traps

Fr

He

Na

K,Fr

(Na)
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1. Fundamental symmetries

what is our current understanding ?
how do we test what lies beyond ?

2. TAMU Penning Trap

physics of superallowed β decay
ion trapping of proton-rich nuclei at T-REX

3. TRIUMF Neutral Atom Trap

angular correlations of polarized 37K
preliminary results of a recent run
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β − ν correlations

model-dependence of δC calcs seem to depend on T . . .
new cases for Vud

Recall : pure Fermi decay ⇔ minimal
nuclear structure effects; decay rate is

simply given by:

peEe(A◦ − Ee)
2ξ

(

1 + aβν
~pe · ~pν

EeEν

+ bF
Γme
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VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999

Positron-Neutrino Correlation in the 0
1

! 0
1 Decay of32

Ar

E. G. Adelberger,1 C. Ortiz,2 A. Garcı́a,2 H. E. Swanson,1 M. Beck,1 O. Tengblad,3 M. J. G. Borge,3 I. Martel,4

H. Bichsel,1 and the ISOLDE Collaboration4

1Department of Physics, University of Washington, Seattle, Washington 98195-1560
2Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

3Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
4EP Division, CERN, Geneva, Switzerland CH-1211

(Received 24 February 1999)

The positron-neutrino correlation in the 0
1
! 0

1 b decay of 32Ar was measured at ISOLDE by
analyzing the effect of lepton recoil on the shape of the narrow proton group following the superallowed
decay. Our result is consistent with the standard model prediction. For vanishing Fierz interference we
find a  0.9989 6 0.0052 6 0.0039, which yields improved constraints on scalar weak interactions.

Doppler shape of delayed
proton depends on ~pe · ~pν !
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will be the world’s most open-geometry ion trap!
uniquely suited for studying β-delayed proton decays:

β − ν correlations, ft values/Vud

mass measurements, EC studies, laser spectroscopy, . . .

re−commissioned
K150 cyclotron

production
target

BigSol
separator multi−RFQ

heavy−ion guide

TAMUTRAP
to charge−breeder

and K500 cyclotron

ortho−TOF

gas−catcher
ANL−type
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Begin trapping RIB soon after K150

commissioned (by 2016)
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1. Fundamental symmetries

what is our current understanding ?
how do we test what lies beyond ?

2. TAMU Penning Trap

physics of superallowed β decay
ion trapping of proton-rich nuclei at T-REX

3. TRIUMF Neutral Atom Trap

angular correlations of polarized 37K
preliminary results of a recent run
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Almost as simple as 0+→ 0+:
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t1/2: ±0.57%
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⇒ need ρ ≡ GAMGT/GV MF

to get SM prediction for correla-
tion parameters

get ρ from the comparative half-life: ρ2 =
2Ft0

+
→0+

Ft
− 1

QEC : ±0.003%

BR: ±0.14%







Ft = 4562(28) ⇒

t1/2: ±0.57%
ρ = 0.5874(71)

The lifetime limits the Ft value

and hence precision of ρ

and hence the SM predictions

of the correlation parameters
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Improving the lifetime
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nearly a 10× improvement: t1/2 = 1236.51 ± 0.47 ± 0.83 ms

⇒ ∆Ft = 0.62% −→ 0.18%

and ∆ρ = 1.2% −→ 0.4%

P. Shidling et al., in preparation
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dW ∼ 1 + aβν
~pe·~pν

EeEν

+ bΓ
m

Ee

+
~I

I
·

[

Aβ

~pe

Ee

+ Bν

~pν

Eν

+ D
~pe×~pν

EeEν

]

Correlation SM prediction
β − ν correlation: aβν = 0.6580(61)

Fierz interference parameter: b = 0 (sensitive to scalars and tensors)

β asymmetry: Aβ = −0.5739(21)

ν asymmetry: Bν = −0.7791(58)

Time-violating D coefficient: D = 0 (sensitive to imaginary couplings)

Precision measurements of these correlations to . 0.1%
complement collider experiments and test the SM

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007)
and Cirigliano, González-Alonso and Graesser, JHEP 1302 (2013)
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dW ∼ 1 + aβν
~pe·~pν

EeEν

+ bΓ
m

Ee

+
~I

I
·

[

Aβ

~pe

Ee

+ Bν

~pν

Eν

+ D
~pe×~pν

EeEν

]

Correlation SM prediction
β − ν correlation: aβν = 0.6580(61) → 0.6668(18)

Fierz interference parameter: b = 0 (sensitive to scalars and tensors)

β asymmetry: Aβ = −0.5739(21) → −0.5719(7)

ν asymmetry: Bν = −0.7791(58) → −0.7703(18)

Time-violating D coefficient: D = 0 (sensitive to imaginary couplings)

Precision measurements of these correlations to . 0.1%
complement collider experiments and test the SM

see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007)
and Cirigliano, González-Alonso and Graesser, JHEP 1302 (2013)



Thank you, AMO physicists!!

Dan Melconian Nov 20, 2013
NSCL

– 27

Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

sub-level state manipulation (optical pumping)

characterization/diagnostics (photoionization)



Thank you, AMO physicists!!

Dan Melconian Nov 20, 2013
NSCL

– 27

Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

σ−

σ+

I
σ−

σ+

σ−

σ+

I



Thank you, AMO physicists!!

Dan Melconian Nov 20, 2013
NSCL

– 27

Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)



Thank you, AMO physicists!!

Dan Melconian Nov 20, 2013
NSCL

– 27

Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

Traps provide a backing-free , very cold (. 1 mK),
localized (∼ 1 mm3) source of isomerically-selective ,
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Atomic methods have opened up a new vista in precision work
and provide the ability to push β decay measurements to . 0.1%

laser-cooling and trapping (magneto-optical traps)

Traps provide a backing-free , very cold (. 1 mK),
localized (∼ 1 mm3) source of isomerically-selective ,

short-lived radioactive atoms

Detect ~pβ and ~precoil

⇒ deduce ~pν event-by-event!! ⇐
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Shake-off e− detection
Better control of OP beams
Bquad → BOP quickly: AC-MOT
(Harvery & Murray, PRL 101 (2008))
Increased β/recoil solid angles
Stronger E-field
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P1/2

mF

S1/2

0 2

σ±

−2= −1 1

deduce P based on a model of the ex-
cited state populations:

⇒ Pnucl = 96.74 ± 0.53+0.19
−0.73
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kludged “Helmholtz” coils

eddy currents
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old system:
retroreflected beams

kludged “Helmholtz” coils

eddy currents

Dec 2012:
beams balanced

anti-Helmholtz → Helmholtz
well-defined fields

ac-MOT ⇒ fast switching and
low eddy currents

much more stable!
lower cloud temperature!



Scintillator spectra — Fall 2012

Dan Melconian Nov 20, 2013
NSCL

– 33

Just the raw data; a slight lower-energy cut to get rid of 511s

E
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Requiring a ∆E coincidence ⇒ remove γs

∆E

E
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Requiring a shake-off e− ⇒ decay occured from trap!

shakeoff

e−

E
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Put in all the basic analysis cuts ⇒ clean spectrum!!

shakeoff

e−

∆E

E
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Comparison with GEANT4 simulation is very good!
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Comparison with GEANT4 simulation is very good!
Much higher asymmetry observed compared to 1st attempt!
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SM is fantastic, but not our “ultimate” theory

many exciting avenues to find more a complete model

nuclear approach: precision measurement of correlation
parameters

Penning trap + RIB CI = cool physics

(AC-)MOT + opt. pumping = cool physics
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TAMU: Spencer Behling, Mike Mehlman, Ben Fenker, Praveen Shidling
+ TAMU/REU undergrads

TRINAT: M. Anholm, J.A. Behr, A. Gorelov,
L. Kurchananov, K. Olchanski, K.P. Jackson

D. Ashery G. Gwinner
Funding/Support:

DOE DE-FG02-93ER40773, Early Career ER41747

TAMU/Cyclotron Institute
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