

#### Current Status of the TAMUTRAP Facility

#### Michael Mehlman / DGM Group TCP 2014, Takamatsu Japan - December 1, 2014



### Outline

Motivation

Bring TAMUTRAP to attention of trapping community
 C •Consider other possible uses for facility

Receive feedback and advice

• F

### TAMUTRAP

- Texas A&M University Penning Trap Facility
- A new precision measurement facility for studying the weak interaction Dan Melconian Friday @ 10:25
  - $-a_{\beta\nu}$ , b, ft values
- Plus
  - Mass measurements
  - Spectroscopy
  - General purpose decay station: ultra pure, low energy, spatially well-defined source



#### Motivation

$$\frac{d^{5}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \propto 1 + \frac{p_{e}}{E_{e}}a_{\beta\nu}\cos\theta_{\beta\nu} + b\frac{m_{e}}{E_{e}}$$

 $a_{\beta\nu}$  related to angle between beta and neutrino





#### T=2, $0^+ \rightarrow 0^+ \beta$ -delayed Proton Emitters

- Protons easy to contain/measure
- M<sub>GT</sub> = 0
- <sup>32</sup>Ar = good initial test (Adelberger et. al)
- Series can be produced z' at Cyclotron Institute



# Penning Trap

#### In 7T field:

Teal: Proton, 4.28 MeV, ≤ 42.7mm radius Blue: Beta, 10 MeV, ≤ 5mm radius



GEANT 4 simulation – P.D. Shidling

- •Spatially confined source
- •Minimal effect on proton energy
- Contains/collects protons
- •Contains/collects βs
- Reduced systematics

M UNIVERSITY

| Nuclide            | Lifetime (ms) | $E_p \; (\mathrm{MeV})$ | $R_L \ (\mathrm{mm})$ |
|--------------------|---------------|-------------------------|-----------------------|
| $^{20}Mg$          | 137.05        | 4.28                    | 42.7                  |
| $^{24}\mathrm{Si}$ | 147.15        | 3.91                    | 40.8                  |
| $^{28}\mathrm{S}$  | 180.33        | 3.70                    | 39.7                  |
| $^{32}\mathrm{Ar}$ | 141.38        | 3.36                    | 37.8                  |
| $^{36}Ca$          | 141.15        | 2.55                    | 33.0                  |
| <sup>40</sup> Ti   | 72.13         | 3.73                    | 39.9                  |
| $^{48}\mathrm{Fe}$ | 63.48         | 1.23                    | 22.9                  |

All radii for 7T magnetic field



# Penning Trap

- 2 traps within Agilent 7T, 210 mm bore magnet:
- Purification trap (ISOLTRAP)
- Measurement trap: new design:
  - Large bore to contain decay products
  - Harmonic, "tunable", "orthogonalized" for precision mass measurements
     Mehlman, et al. NIM A 712, 0168-9002 (2013)





#### Cyclotron Institute





#### **TAMUTRAP Beam Line**



#### TAMUTRAP Beam Line





#### **Cylindrical Deflectors**



Inspired by Kreckel et al 2010

#### **Cylindrical Deflectors**





## RFQ Cooler/Buncher

Oscillating potential Up to 120V P-P RF 0.5-1.4 MHz frequency (analog electronics) 10<sup>-2</sup>-10<sup>-4</sup>mbar 99.999% He 2-10 ms cooling time 33 Segments  $\Delta E_{f} \approx 5 \text{ eV}$ Variable drag Δt<sub>f</sub> ≈1.2µs (0-100V DC) 12/1/14 13

M UNIVERSITY

#### RFQ 2.0 Design





#### **Beam Line Install**

Aligned optically to about ≤1mm from beam axis at any element





## Beam Line Characterization/Optimization





### **Preliminary Results**

- Continuous Mode Efficiency
  - (RFQ + Injection + Extraction)
    - No gas, 112V<sub>pp</sub>, 1.1MHz, 180eV Beam Energy – Greater than 74%
    - No gas,  $112V_{pp}$ , 1.1MHz, 100eV Beam Energy
      - Greater than 64%



### Preliminary Results

• Bunching

#### - Preliminary, but clear signal over continuous mode



Nov. 19, 2014



#### **Future Plans**

- Continue beam characterization / optimization
  - Emittance (MCP + pepper pot)
- Simulation of traps, detectors, etc. (GEANT) (P.D. Shidling)
- Mechanical design of traps, detectors, etc.
- Data acquisition, etc.
- ???
- TRAP / SCIENCE!





## Acknowledgements

- DGM Group (Dan Melconian, Praveen Shidling, Spencer Behling, Ben Fenker, Eames Bennett, Me!)
- The CPT group at ANL and the TITAN group at TRIUMF
- Cyclotron Institute employees and researchers
- Supported by the U.S. Department of Energy under grants ER41747 and ER40773



#### Backup Slides



#### **Bunched Over Continuous**





12/1/14

#### Beamline Losses / Feasibility

#### Calculating 32Ar requirements

| Element                   | Efficiency (%) | Rate After Element (p/s) | ) C     | urrent (pA) |
|---------------------------|----------------|--------------------------|---------|-------------|
| Measurement trap          | 100            | 5                        | .00E+02 | 0.00008     |
| Beamline                  | 95             | 5                        | .00E+02 | 0.00008     |
| Purification              | 50             | 5                        | .26E+02 | 0.00008416  |
| Beamline                  | 95             | 1                        | .05E+03 | 0.00016832  |
| RFQ (bunched mode)        | 50             |                          | .11E+03 | 0.00017712  |
| Beamline                  | 95             | 2                        | .21E+03 | 0.00035424  |
| Magnet (coarse selection) | 100            | 2                        | .33E+03 | 0.00037296  |
| Multi-RFQ                 | 80             | 2                        | .33E+03 | 0.00037296  |
| Gas catcher               | 10             | 2                        | .91E+03 | 0.00046624  |
| Big Sol                   | 30             | 2                        | .91E+04 | 0.0046624   |
| Production                | 100            | 9                        | .71E+04 | 0.01554128  |



#### Beam Line Alignment



Ion Source Flange



1<sup>st</sup> Collimator (Ø2mm)



2<sup>nd</sup> Collimator (Ø10mm)



Injection 1 (Ø2mm)



Injection 2 (Ø2mm)



RFQ Entrance (Ø6mm)



Extraction (Ø6mm)





### Measurement Trap

Electric field can be expanded as:  

$$V = \frac{1}{2} V_0 \sum_{\substack{k=0 \\ k \text{ even}}}^{\infty} C_k \left(\frac{r}{d}\right)^k P_k(\cos \theta)$$

 $\mathbf{C}_{\mathbf{4}}$  and higher order are anharmonic terms

Adding compensation electrodes allows for C<sub>4</sub> to be "tuned" out

$$D_2 = 0 = \sum_{n=0}^{\infty} \frac{2\left\{\frac{\sin(k_n(z_0 - z_{c2})) - \sin(k_n(z_0 - z_c))}{\pi J_0(ik_n \rho_0)}\right\} d^k k_n^k (-1)^{k/2}}{k!}$$

Also minimize higher order terms ( $C_{>4}$ ), most importantly  $C_6$ 



Calculated tuning (C<sub>4</sub>=0) condition:  $V_c/V_o = -0.371$ Maximum machining precision ~0.03mm SIMION Precision limited to ~3x10<sup>-3</sup>



27

#### **Beam Properties**



