TOWARD THE FUTURE: UPGRADING THE ${ }^{6}$ HE-CRES EXPERIMENT WITH AN ION TRAP

David McClain

MOTIVATION

$>$ Probe chirality-flipping couplings through the Fierz interference term

$$
\begin{aligned}
& \text { > Where we can find } b \text { in the beta decay equation }
\end{aligned}
$$

MOTIVATION

> Probe chirality-flipping couplings through the Fierz interference term

$$
b= \pm \frac{2 \sqrt{1-(\alpha Z)^{2}}\left[\frac{g_{S}}{g_{V}} \epsilon_{S}-4\left(\frac{\langle\sigma \tau\rangle}{\langle\tau\rangle}\right)^{2} \frac{g_{T}}{g_{V}} \frac{g_{A}}{g_{V}} \epsilon_{T}\right]}{1+\left(\frac{\langle\sigma \tau\rangle}{\langle\tau\rangle}\right)^{2}\left(\frac{g_{A}}{g_{V}}\right)^{2}}
$$

> Where we can find b in the beta decay equation

$$
W d E \propto \frac{F(\pm Z, E)}{2 \pi^{3}} p E\left(E_{0}-E\right)^{2} \xi\left(1+b \frac{m}{E}\right) d E
$$

CRASH COURSE: CRES

> Cyclotron Radiation Emission Spectroscopy (CRES)
> Developed by the Project 8 collaboration
> Measures radiation of axially confined betas in a magnetic trap

D. M.Asner, et al., Phys. Rev. Lett. I I4, I6250 (2015)
"Never measure anything but frequency!" Arthur Schawlow

CRASH COURSE: CRES

> Cyclotron Radiation Emission Spectroscopy (CRES)
> Developed by the Project 8 collaboration
> Measures radiation of axially confined betas in a magnetic trap
$>$ Linear tracks form as the beta loses energy to the emissions

$$
f \propto \frac{q B}{m_{e}+E_{e}}
$$

D. M.Asner, et al., Phys. Rev. Lett.II4, I6250I (2015)
"Never measure anything but frequency!" Arthur Schawlow

CRASH COURSE: CRES

> Cyclotron Radiation Emission Spectroscopy (CRES)
> Developed by the Project 8 collaboration
> Measures radiation of axially confined betas in a magnetic trap
$>$ Linear tracks form as the beta loses energy to the emissions

$$
f \propto \frac{q B}{m_{e}+E_{e}}
$$

> Retracing to the starting point of the track we can narrow our energy resolution to the eV scale!
D. M.Asner, et al., Phys. Rev. Lett. I I4, I6250 (2015)
"Never measure anything but frequency!" Arthur Schawlow

Magnetic field line

6HE-CRES IN A NUTSHELL

> Pumps gaseous ${ }^{6} \mathrm{He}$ and ${ }^{19} \mathrm{Ne}$ atoms into a decay cell/waveguide

W. Byron et al., arxiv:2209.02870 (2022)

6HE-CRES IN A NUTSHELL

> Pumps gaseous ${ }^{6} \mathrm{He}$ and ${ }^{19} \mathrm{Ne}$ atoms into a decay cell/waveguide
> Magnetic trap for axial confinement for betas

W. Byron et al., arxiv:2209.02870 (2022)

6HE-CRES IN A NUTSHELL

$>$ Pumps gaseous ${ }^{6} \mathrm{He}$ and ${ }^{19} \mathrm{Ne}$ atoms into a decay cell/waveguide
> Magnetic trap for axial confinement for betas
> Alter B-field to scan entire spectrum

W. Byron et al., arxiv:2209.02870 (2022)

WALL EFFECTS

Largest and smallest electron orbits at 2 T
> Wall-bound betas leave insufficient tracks
> Energy dependent spectrum shift
$>$ Spectrum ratio cancellation (${ }^{19} \mathrm{Ne}$ and ${ }^{6} \mathrm{He}$)

WALL EFFECTS

Largest and smallest electron orbits at 2 T
> Wall-bound betas leave insufficient tracks
> Energy dependent spectrum shift
$>$ Spectrum ratio cancellation (${ }^{19} \mathrm{Ne}$ and ${ }^{6} \mathrm{He}$)
> Radial confinement of ions with ion trap

ION TRAP ADDITION: PENNING TRAP

Design Specifications
> Radius: $r=5.78 \mathrm{~mm}$
> Trap Length: $l=101.6 \mathrm{~mm}$

ION TRAP ADDITION: PENNING TRAP

Design Specifications
> Radius: $r=5.78 \mathrm{~mm}$
> Trap Length: $l=101.6 \mathrm{~mm}$
RF Considerations
> 4 electrode gaps of $\Delta x=0.5 \mathrm{~mm}$
> Shielded insulator from RF cavity

RF CONSIDERATIONS

> Changes to waveguide
> $\mathrm{r}=2 \mathrm{~mm}$ hole added to the waveguide

RF CONSIDERATIONS

> Changes to waveguide
> $\mathrm{r}=2 \mathrm{~mm}$ hole added to the waveguide
> RF Considerations
> Loss difference is small between the current waveguide and the proposed additions

ION TRAP ADDITION: RFQ

Operating Parameters

$>$ Characteristic radius: $r_{0}=12 \mathrm{~mm}$
> Operating frequencies: $f=1-2 \mathrm{MHz}$
> Peak-to-peak voltage: $V_{p p}=400 \mathrm{~V}$
Resulting Bunch Characteristics
> Time spread: $\Delta \mathrm{t} \sim 0.57 \mu \mathrm{~s}$
> Energy spread: $\Delta \mathrm{E} \sim 3.5 \mathrm{eV}$
$>$ Emittance: $\varepsilon_{r m s} \sim 0.9 \pi \mathrm{~mm} \mathrm{mrad} @ 60 \mathrm{keV}$
$>$ Transmission Rate (Within RFQ): 83\%
> Estimated maximum capacity: $\mathbf{1 . 4} \cdot \mathbf{1 0}^{\mathbf{4}}$ particles/bunch
T. Brunner, et al., Nuc. Inst. and Methods 676, 32-43 (2012)
M. Mehlman, et al., Hyperfine Interact 235, 77-86 (2015)

A LOOK INSIDE THETRAP

> In the trap, we have $\sim 65 \%$ of ions from the RFQ being captured and radially contained to avoid wall effects
$><1 \%$ of ions have a maximum radius within the "Danger Zone" that would contribute to wall effects

COUNT RATE

Cause of Loss	Effect
RFQ Efficiency (continuous mode)	83% efficiency
Beamline \& Trap Injection	65% efficiency
Trapped Betas	3% efficiency
Events observed within frequency window	10% efficiency

> We won't be able to get to the expected count rate from the proposal given the presumed limitations of the RFQ.

SPACE CHARGE EFFECTS

M. Gerbaux, et al.,hal-038।5I8I (2022)

COUNT RATE

Cause of Loss \quad Effect \begin{tabular}{|c|c|}
\hline RFQ Efficiency (continuous mode) \& 83% efficiency

\hline Beamline \& Trap Injection \& 65% efficiency

\hline Trapped Betas \& 3% efficiency

\hline | Events observed within frequency |
| :---: |
| window | \& 10% efficiency

\hline
\end{tabular}

> We won't be able to get to the expected count rate from the proposal given the presumed limitations of the RFQ.

IONTRAP ADDITION: CONCLUSION

Wall effects
Radial confinement of charged particles
RF considerations
E Restricted ion trap size
E Injection hole and electrode gaps do not degrade signal
Trap injection
RFQ designed for wide mass range
Count Rate
[Limitations of bunch size limit count rate, but simulations show that this may not be the case.

W. A. Byron, W. DeGraw, B. Dodson, M. Fertl, A. García, B. Graner, E. Hanes, H. Harrington, L. Hayen, X. Huyan,
S. Hightower, M. E. Higgins, N. C. Hoppis, M. Kimsey-Lin, K. Knutsen, D. McClain, D. Melconian, P. Mueller, N. S. Oblath, R. Roehnelt, G. Savard, E. B. Smith, D. Stancil, D. W. Storm H. E. Swanson, R.J. Taylor, J. Tedeschi, B. A. VanDevender,
F. Wietfeldt, and A. R. Young,

This work is supported by U.S.
Department of Energy and National Nuclear Security Administration Grant No. DEFG02-93ER40773 and DE-NA0003841

Center for Experimental Nuclear Physics and Astrophysics

Pacific Northwest

 NATIONAL LABORATORY

THANK YOU

Questions?

BACKUPS

Trap Closed

Trap Open

$$
\begin{aligned}
\frac{1}{2} k T & =\frac{1}{2} m \omega_{\mathrm{sec}}^{2} u_{\mathrm{sec}}^{2} \\
u & =u_{\mathrm{sec}}-\frac{q u_{\mathrm{sec}}}{2} \cos \left(\omega_{\mathrm{RF}} t\right) \\
n & =\frac{\epsilon_{0}}{e} \cdot q \frac{V_{\mathrm{RF}}}{r_{0}^{2}} \\
N_{\max } & =\pi u_{\text {total }}^{2} \cdot n \cdot z_{0}
\end{aligned}
$$

- Rubiales, D. R. (2003) A radiofrequency quadrupole buncher for accumulation and cooling of heavy radionuclides at SHIPTRAP and high precision mass measurements on unstable krypton isotopes at ISOLTRAP

$$
\begin{gathered}
P_{T E_{11}}=\frac{Z_{11} e^{2} v_{0}^{2}}{8 \pi \alpha}\left(J_{1}^{\prime 2}\left(k_{c} \rho_{c}\right)+\frac{1}{k_{c}^{2} \rho_{c}^{2}} J_{1}^{2}\left(k_{c} \rho_{c}\right)\right) \\
P_{T M_{01}}=\frac{Z_{01} e^{2} v_{0}^{2}}{16 \pi^{2} \beta} * J_{0}^{\prime 2}\left(k_{c} \rho\right) \\
v_{0}=\rho_{c} \Omega_{c} \\
\alpha=0.108858 R^{2}
\end{gathered}
$$

DNP-2022

GOLIATH

Gas Operated Light-Ion Atomic Trap for ${ }^{6} \mathrm{He}-\mathrm{CRES}$

This work is supported by U.S. Department of Energy and National Nuclear Security Administration Grant No. DEFG02-93ER40773 and DE-NA0003841

Radio frequency quadrupole trap (RFQ)

The Mathieu stability parameter q must be constrained between $0.4<q<0.7$ from for the highest probability of retaining an ion of mass M

$$
\mathrm{q}=\frac{e V_{p p}}{\Omega^{2} M r_{0}^{2}}
$$

With this we constrain our operating voltage $\left(V_{p p}\right)$ and frequency (Ω) to the characteristic distance $\left(r_{0}\right)$ for a given mass.
With ions trapped in the RFQ, we use a buffer gas to cool the ions. Once the ions have sufficiently cooled, we release them from the RFQ as a singular bunch that is able to be captured by the Penning trap for measurement

