Outline - Motivation for building a decay trap - Present status (prototype trap) - New trap - To do ## Why we build TAMUTRAP? In Standard Model (SM) weak interaction is V-A **Correlation parameter** **Pure Fermi transition** $$W(\theta) \cong \left(1 + \frac{a_{\beta v}}{E_e E_v} + \frac{\frac{p_e p_v}{e}}{E_e E_v} \cos \theta_{ev} + b \frac{\frac{m_e}{E_e}}{E_e}\right)$$ **Test of SM** # **Beta delayed proton emitters** | Nuclide | Lifetime (ms) | Proton
Energy
(MeV) | Larmour
radii
(mm) | |------------------|---------------|---------------------------|--------------------------| | 20 Mg | 137.05 | 4.28 | 42.7 | | ²⁴ Si | 147.15 | 3.91 | 40.8 | | ²⁸ S | 180.33 | 3.70 | 39.7 | | ³² Ar | 141.38 | 3.36 | 37.8 | | ³⁶ Ca | 141.15 | 2.55 | 33.0 | | ⁴⁰ Ti | 72.13 | 3.73 | 39.9 | | ⁴⁸ Fe | 63.48 | 1.23 | 22.9 | ³²Cl ### Control & Data acquisition: #### CAEN 1190B 64 Channel TDC ### Root + Python for data acquisition LabVIEW programs for PS control ### Python for fitting TOF integral numerically These resonances are nothing to brag about, but the trap works. The pressure is 1-2*10-7 mbar in the trap. 100 ms excitation time M(23Na)-M(AME)=0.3 +- 3.9 keV => Prototype trap works ## TAMUTRAP Penning trap system (180 mm diameter) Beam tube vacuum tested ### Silicon strip detectors - -Will be made of several sectors that have segments radially - -Hole in the center - $-500 \mu m$ thick or thicker - -Simulations going on - -Discussing with Micron and local group at Texas A&M that can possibly manufacture it #### To do list #### August 2018: - -Gold coating of electrodes - -Install gate valve between RFQ and magnet/Penning trap - -Replace Viton rings with copper gaskets - -Alignment of the RFQ section #### September-December 2018: - -Impedance matching for RFQ - -Bake the beam tube - -Final assembly of the trap - -Beam tube into the magnet - -Trap into the tube - -Beam transport test - -Trapping tests - -Excitations #### 2019: - -Modify trap that silicon strip detectors can be mounted - -Electronics for detectors ## **Coupling of T-REX to TAMUTRAP facility 2020** BigSol, Separator; Gas-catcher; multi-RFQ Or **Light Ion Guide**; 90⁰ bending magnet (purification) ### THE BOYS and THE REU STUDENTS **ACKNOWLEDGEMETS:** U.S. Department of Energy Grant No. DE-FG02-93ER40773 ## **TAMUTRAP: Penning Trap** ### **Cylindrical Penning Trap** | Nuclide | Lifetime (ms) | Proton
Energy
(MeV) | Larmour
radii
(mm) | |------------------|---------------|---------------------------|--------------------------| | 20 Mg | 137.05 | 4.28 | 42.7 | | ²⁴ Si | 147.15 | 3.91 | 40.8 | | ²⁸ S | 180.33 | 3.70 | 39.7 | | ³² Ar | 141.38 | 3.36 | 37.8 | | ³⁶ Ca | 141.15 | 2.55 | 33.0 | | ⁴⁰ Ti | 72.13 | 3.73 | 39.9 | | ⁴⁸ Fe | 63.48 | 1.23 | 22.9 | M. Mehlman et al. NIMA **712** (2013) 9 Other existing Cylindrical Penning Trap Radius : 90 mm 1/r = 3.72 ## **Prototype Penning Trap(Commissioned)** | C_i | TAMU
Analytic | TAMU
Simulated | TITAN
Analytic | PENTATRAP
Analytic | LEBIT
Simulated | |-------|---------------------|---------------------|---------------------|-----------------------|---------------------| | | -5×10^{-1} | | - | | 8×10^{-1} | | | 5×10^{-1} | | - | -2×10^{-2} | 1 | | | -7×10^{-6} | | -7×10^{-6} | 4×10^{-6} | 2×10^{-3} | | C_6 | 6×10^{-6} | -3×10^{-3} | 5×10^{-5} | 2×10^{-7} | -4×10^{-3} | | C_8 | -4×10^{-2} | -4×10^{-2} | - | -1×10^{-1} | 3×10^{-3} | Table 6.1: Expansion coefficients are compared for the optimized TAMUTRAP measurement trap when tuned (analytic and simulated) and three other existing Penning traps: TITAN (calculated analytically as in Ref. [11]), PENTATRAP (calculated analytically as in Ref. [45]), and LEBIT (simulated using SIMION as in Ref. [47]). ### **TAMUTRAP:** Cooler/Buncher #### M. Mehlmann (Ph.D. Thesis) $$E_{(FWHM)} = 5 eV$$ $TOF_{(FWHM)} = 1.2 \mu s$ $$V_{RF} = 100 - 150 V$$ $f_{RF} = 0.75 - 1 MHz$ 70 % efficiency 32 segments, R=7 mm and gap $2R_0=12$ mm