

Outline

- Motivation for building a decay trap
- Present status (prototype trap)
- New trap
- To do

Why we build TAMUTRAP?

In Standard Model (SM) weak interaction is

V-A

Correlation parameter

Pure Fermi transition

$$W(\theta) \cong \left(1 + \frac{a_{\beta v}}{E_e E_v} + \frac{\frac{p_e p_v}{e}}{E_e E_v} \cos \theta_{ev} + b \frac{\frac{m_e}{E_e}}{E_e}\right)$$

Test of SM

Beta delayed proton emitters

Nuclide	Lifetime (ms)	Proton Energy (MeV)	Larmour radii (mm)
20 Mg	137.05	4.28	42.7
²⁴ Si	147.15	3.91	40.8
²⁸ S	180.33	3.70	39.7
³² Ar	141.38	3.36	37.8
³⁶ Ca	141.15	2.55	33.0
⁴⁰ Ti	72.13	3.73	39.9
⁴⁸ Fe	63.48	1.23	22.9

³²Cl

Control & Data acquisition:

CAEN 1190B 64 Channel TDC

Root + Python for data acquisition

LabVIEW programs for PS control

Python for fitting TOF integral numerically

These resonances are nothing to brag about, but the trap works. The pressure is 1-2*10-7 mbar in the trap.

100 ms excitation time M(23Na)-M(AME)=0.3 +- 3.9 keV => Prototype trap works

TAMUTRAP Penning trap system (180 mm diameter)

Beam tube vacuum tested

Silicon strip detectors

- -Will be made of several sectors that have segments radially
- -Hole in the center
- $-500 \mu m$ thick or thicker
- -Simulations going on
- -Discussing with Micron and local group at Texas A&M that can possibly manufacture it

To do list

August 2018:

- -Gold coating of electrodes
- -Install gate valve between RFQ and magnet/Penning trap
- -Replace Viton rings with copper gaskets
- -Alignment of the RFQ section

September-December 2018:

- -Impedance matching for RFQ
- -Bake the beam tube
- -Final assembly of the trap
- -Beam tube into the magnet
- -Trap into the tube
- -Beam transport test
- -Trapping tests
- -Excitations

2019:

- -Modify trap that silicon strip detectors can be mounted
- -Electronics for detectors

Coupling of T-REX to TAMUTRAP facility 2020

BigSol, Separator; Gas-catcher; multi-RFQ

Or

Light Ion Guide; 90⁰ bending magnet (purification)

THE BOYS and THE REU STUDENTS

ACKNOWLEDGEMETS:

U.S. Department of Energy Grant No. DE-FG02-93ER40773

TAMUTRAP: Penning Trap

Cylindrical Penning Trap

Nuclide	Lifetime (ms)	Proton Energy (MeV)	Larmour radii (mm)
20 Mg	137.05	4.28	42.7
²⁴ Si	147.15	3.91	40.8
²⁸ S	180.33	3.70	39.7
³² Ar	141.38	3.36	37.8
³⁶ Ca	141.15	2.55	33.0
⁴⁰ Ti	72.13	3.73	39.9
⁴⁸ Fe	63.48	1.23	22.9

M. Mehlman et al. NIMA **712** (2013) 9

Other existing Cylindrical Penning Trap

Radius : 90 mm 1/r = 3.72

Prototype Penning Trap(Commissioned)

C_i	TAMU Analytic	TAMU Simulated	TITAN Analytic	PENTATRAP Analytic	LEBIT Simulated
	-5×10^{-1}		-		8×10^{-1}
	5×10^{-1}		-	-2×10^{-2}	1
	-7×10^{-6}		-7×10^{-6}	4×10^{-6}	2×10^{-3}
C_6	6×10^{-6}	-3×10^{-3}	5×10^{-5}	2×10^{-7}	-4×10^{-3}
C_8	-4×10^{-2}	-4×10^{-2}	-	-1×10^{-1}	3×10^{-3}

Table 6.1: Expansion coefficients are compared for the optimized TAMUTRAP measurement trap when tuned (analytic and simulated) and three other existing Penning traps: TITAN (calculated analytically as in Ref. [11]), PENTATRAP (calculated analytically as in Ref. [45]), and LEBIT (simulated using SIMION as in Ref. [47]).

TAMUTRAP: Cooler/Buncher

M. Mehlmann (Ph.D. Thesis)

$$E_{(FWHM)} = 5 eV$$

 $TOF_{(FWHM)} = 1.2 \mu s$

$$V_{RF} = 100 - 150 V$$

 $f_{RF} = 0.75 - 1 MHz$

70 % efficiency

32 segments, R=7 mm and gap $2R_0=12$ mm