Measurement of the nuclear polarization in optically-pumped ${ }^{37} \mathrm{~K}$:
 Progress towards a measurement of the
 β-asymmetry parameter

Benjamin Fenker

Texas A\&M University Cyclotron Institute
TRIUMF Neutral Atom Trap
Symmetries in Subatomic Physics
Victoria, BC

June 82015

Acknowledgments

The TRINAT Collaboration

- TRIUMF - John Behr, Alexandre Gorelov, Konstantin Olchanski, Ioana Craiciu, Claire Warner, Claire Preston
- Texas A \& M - Spencer Behling, Michael Mehlman, Dan Melconian, Praveen Shidling, Eames Bennett
- U of Manitoba - Melissa Anholm, Gerald Gwinner
- Tel Aviv - Daniel Ashery, Iuliana Cohen

TRIUMF \& ISAC Target \& Beam Delivery Group
Funding Agencies

- USA: DOE DE-FG02-93ER40773 \& Early Career ER41747
- Canada: NSERC, NRC through TRIUMF, WestGrid
- Israel: Israel Science Foundation

Outline

- Motivation - Testing the SM with nuclear physics
- TRINAT - TRIUMF's Neutral Atom Trap
- Polarization through optical pumping
- Systematics in the polarization measurement
- Outlook and future plans

Motivation: Fundamental Symmetries

- Search for possible right-handed currents
- $S U(2)_{L} \otimes U(1)_{Y} \xrightarrow{?} S U(2)_{R} \otimes S U(2)_{L} \otimes U(1)_{Y}$
- Contribute to independent check on the value of $V_{u d}$
- Energy dependence tests recoil-order corrections, weak magnetism, second-class currents
Angular correlations in β-decay are sensitive to new physics
- 10^{-3} precision constrains SM extensions, while 10^{-4} has discovery potential

$$
\begin{aligned}
& \frac{d^{5} W}{d E d \Omega_{e} d \Omega_{v}} \sim 1+a_{\beta v} \frac{p_{e} p_{v} \cos \left(\theta_{e v}\right)}{E_{e} E_{v}}+b \frac{m_{e}}{E_{e}}+ \\
& P\left(A_{\beta} \frac{p_{e}}{E_{e}} \cos \left(\theta_{e}\right)+B_{v} \frac{p_{v}}{E_{v}} \cos \left(\theta_{v}\right)\right)+\ldots
\end{aligned}
$$

Overview

- Magneto-Optical Trap (MOT)

- Provides a cold ($\sim 1 \mathrm{mK}$), localized ($\sim \varnothing 1 \mathrm{~mm}$) source of atoms
- Shallow trap so products emerge unperturbed

Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- $\sigma^{ \pm}$lasers drive biased random walk towards $P_{\text {nucl }}= \pm 1$

Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- Nuclear Detectors
- β-telescopes measure position, energy along polarization axis

Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- Nuclear Detectors
- β-telescopes measure position, energy along polarization axis

β-detection

- Scintillators record full energy; backgrounds from untrapped atoms, annihilation
- Shake-off electron MCP tags events that decay from the trap
- Silicon ΔE detectors suppress background from $\gamma \mathrm{s}$
- Collected statistics for 0.2% measurement of $A_{o b s}$

BC 408

Optical Pumping

- Stretched state has $F=2, M_{F}=2$ or equivalently $I_{z}=\frac{3}{2}, J_{z}=\frac{1}{2}$
- Zeeman sublevels feel $B_{z}=2 \mathrm{G}$ along quantization axis
- Stretched state corresponds to atomic and nuclear polarization
- Photoionization is a monitor of excited state population
- Use this to monitor trap size, position, temperature, polarization

Note: $\vec{F}=\vec{l}+\vec{J}$

Optical Pumping

- Stretched state has $F=2, M_{F}=2$ or equivalently $I_{z}=\frac{3}{2}, J_{z}=\frac{1}{2}$
- Zeeman sublevels feel $B_{z}=2 \mathrm{G}$ along quantization axis
- Stretched state corresponds to atomic and nuclear polarization
- Photoionization is a monitor of excited state population
- Use this to monitor trap size, position, temperature, polarization

Note:

$$
\vec{F}=\vec{\imath}+\vec{J}
$$

Optical Pumping

- Stretched state has $F=2, M_{F}=2$ or equivalently $I_{z}=\frac{3}{2}, J_{z}=\frac{1}{2}$
- Zeeman sublevels feel $B_{z}=2 \mathrm{G}$ along quantization axis
- Stretched state corresponds to atomic and nuclear polarization
- Photoionization is a monitor of excited state population
- Use this to monitor trap size, position, temperature, polarization

Note: $\vec{F}=\vec{l}+\vec{J}$

Photoions monitor trap parameters

- Polarized measurements must be done with MOT off
- With MOT off, cloud expands; alternate counting/trapping

Photoionization signal

With time-of-flight and position cuts, this signal is very clean

Polarization Signal

This strong signal allows clean measurement of polarization

- Initial peak proportional to number of atoms, laser power, provides normalization
- Tail region provides information about the degree of polarization

- Directly measure non-stretched population, but
- Polarization depends on how this small population is distributed amongst sublevels
- Small tail measures deviation from unity

Polarization Signal

Polarization Model

$$
\begin{aligned}
& H_{S O}=\vec{L} \cdot \vec{S} \\
& { }_{n f}=\vec{l} \cdot(\vec{L}+\vec{S}) \\
& \hat{e}_{d} \vec{E}(t)=E_{0} \cos \left(k z-\omega_{L} t\right) \hat{\varepsilon}_{q} \\
& \langle P\rangle=\operatorname{Tr}(\hat{\rho} \hat{P})=\operatorname{Tr}\left(\hat{\rho} \hat{I}_{z}\right) \\
& \text { Density Matrix: } \\
& \rho_{i i} \text { - population of state } i \\
& \rho_{i j} \text { - correlation between } i, j \\
& \text { Tremblay, P. and Jacques C. PRA 41(9), } 4989 \text { (1990) } \\
& \text { Renzoni, F. et al. PRA 63(6), } 065401 \text { (2001) }
\end{aligned}
$$

Systematics in the polarization measurement

- Photoionization signal is an indirect measure of the polarization
- Light ellipticity and a transverse magnetic field affect the photoionization curve similarly but result in different polarization
- Off-line studies:

$$
B_{x} \leq 66 \mathrm{mG}
$$

- Stokes parameter:

$$
\begin{aligned}
\left\langle s_{3}\right\rangle & =\frac{I_{+}-I_{-}}{I_{+}+I_{-}} \\
& \geq+0.9893 \\
& \leq-0.9983
\end{aligned}
$$

- CPT "dark" states are minimized

Depolarizing mechanisms - Stokes Parameter s_{3}

- s_{3} characterizes the degree of circular polarization
- s_{0} is equivalent to the total power contained in the beam

$$
\frac{s_{3}}{s_{0}}=\frac{I_{+}-I_{-}}{I_{+}+I_{-}}
$$

- If $\left|s_{3}\right| / s_{0}<1.0$, atoms can be pumped out of the stretched state

Equilibrium is reached with not all atoms in the fully stretched state

Depolarizing mechanisms - Stokes Parameter s_{3}

Depolarizing mechanisms - Transverse magnetic field

- Magnetic field perpendicular to polarization axis causes precession

Atoms in the stretched state precess to other ground states

$$
\begin{aligned}
& \vec{B}=B_{x} \hat{x}+B_{z} \hat{z} \\
& H_{\vec{B}}=-\vec{\mu} \cdot \vec{B} \\
& H_{B_{x}}=g_{F} \mu_{B} B_{x} F_{x}=g_{F} \mu_{B} B_{x} \frac{F_{+}+F_{-}}{2}
\end{aligned}
$$

Depolarizing mechanisms - Transverse magnetic field

Trim coils minimize transverse magnetic field
Scan current and minimize optical pumping tail to find $l_{i d e a l}$

- Compare $I_{\text {ideal }}$ and $I_{\text {actual }}$, find $B_{x}=33 \mathrm{mG}$.
- Conservatively assign 100% uncertainty $\rightarrow B_{x} \leq 66 \mathrm{mG}$

Results

- Depolarizing mechanisms are almost 100\% correlated
- Perform separate fits with either s_{3} or B_{\perp} fixed

$$
B_{x}=66 \mathrm{mG}
$$

$B_{x}=4(36) \mathrm{mG}$

$$
\begin{aligned}
I\left(\sigma^{-}\right) & =2.2(3) \mathrm{Wm}^{-2} \\
s_{3}\left(\sigma^{-}\right) & =-0.9967(9) \\
P & =-0.994(1)_{\text {stat }}
\end{aligned}
$$

$$
\begin{array}{rlrl}
I\left(\sigma^{+}\right) & =2.1(2) \mathrm{Wm}^{-2} & I\left(\sigma^{-}\right) & =2.0(2) \mathrm{Wm}^{-2} \\
s_{3}\left(\sigma^{+}\right) & =+0.9915(16) & s_{3}\left(\sigma^{-}\right) & =-0.9938 \\
P & =+0.990(2)_{\text {stat }} & P & =-0.9916(4)_{\text {stat }}
\end{array}
$$

$$
I\left(\sigma^{+}\right)=2.0(2) \mathrm{Wm}^{-2}
$$

$$
s_{3}\left(\sigma^{+}\right)=+0.9893
$$

$$
P=+0.9890(3)_{\text {stat }}
$$

Results - Global Fit

Vary delay-time after AC-MOT

Fit with common s_{3} and B_{x}

Results

Uncertainties $/ 10^{-4}$				
	σ^{+}		σ^{-}	
	Polarization	Alignment	Polarization	Alignment
Depolarizing Mechanism	8	15	4	5
Global Fit vs. Average	1	3	1	2
Fit Δ vs. Fit I	3	6	3	6
Uncertainty in B_{z}	1	3	1	1
Binning	2	3	2	5
Initial Alignment $\left(T_{0}=-1\right)$	18	42	15	36
Hyperfine Pumping	1	2	1	3
Sum Systematics	$\mathbf{2 0}$	$\mathbf{4 5}$	$\mathbf{1 6}$	$\mathbf{3 7}$
Statistics	$\mathbf{6}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{1 9}$
Uncertainty	$\mathbf{2 2}$	$\mathbf{4 8}$	$\mathbf{1 8}$	$\mathbf{4 2}$
Central Value	$\mathbf{0 . 9 8 9 8}$	$\mathbf{- 0 . 9 7 6 1}$	$\mathbf{- 0 . 9 9 2 0}$	$\mathbf{- 0 . 9 8 0 8}$

$$
\bar{P}=\frac{\left\langle M_{1}\right\rangle}{I}=0.991(2) \quad \bar{T}=\frac{I(I+1)-3\left\langle M_{1}^{2}\right\rangle}{I(2 I-1)}=-0.978(5)
$$

Conclusions

- Nuclear polarization gives access to more β-decay observables
- Optical pumping achieves high polarization in an open geometry $\rightarrow \bar{P}=0.991 \pm 0.002$
- Will not dominate the uncertainty for present data set
- We expect $\frac{d A_{\beta}}{A_{\beta}} \leq 0.5 \%\left(A_{\beta}^{S M}=-0.5706(7)\right)$
- Future plans include modeling our MOT to reduce uncertainty from initial sublevel distribution
- Polarization measurement at 10^{-4} precision requires more systematic studies

	Uncertainty / 10-4	
	2012	2014
Asymmetry (Stat.)	62	20
Polarization (Stat.)	$\mathbf{6 0}$	$\mathbf{7}$
Polarization (Systematics)	$\mathbf{5 6}$	$\mathbf{1 8}$
Detector Response	64	
Asymmetric Number of Trapped Atoms	25	
Trap Movement	18	
Timing Errors	9	
Mirror Thickness	2	

THANK

Backup slides ...

Acknowledgments

The TRINAT Collaboration

- TRIUMF - John Behr, Alexandre Gorelov, Konstantin Olchanski, Ioana Craiciu, Claire Warner, Claire Preston
- Texas A \& M - Spencer Behling, Michael Mehlman, Dan Melconian, Praveen Shidling, Eames Bennett
- U of Manitoba - Melissa Anholm, Gerald Gwinner
- Tel Aviv - Daniel Ashery, Iuliana Cohen

TRIUMF \& ISAC Target \& Beam Delivery Group
Funding Agencies

- USA: DOE DE-FG02-93ER40773 \& Early Career ER41747
- Canada: NSERC, NRC through TRIUMF, WestGrid
- Israel: Israel Science Foundation

Comparison with Geant4

Results

Uncertainties $/ 10^{-4}$				
	σ^{+}		σ^{-}	
	Polarization	Alignment	Polarization	Alignment
Depolarizing Mechanism	8	15	4	5
Global Fit vs. Average	1	3	1	2
Fit Δ vs. Fit I	3	6	3	6
Uncertainty in B_{z}	1	3	1	1
Binning	2	3	2	5
Initial Alignment $\left(T_{0}=-1\right)$	18	42	15	36
Hyperfine Pumping	1	2	1	3
Sum Systematics	$\mathbf{2 0}$	$\mathbf{4 5}$	$\mathbf{1 6}$	$\mathbf{3 7}$
Statistics	$\mathbf{6}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{1 9}$
Uncertainty	$\mathbf{2 2}$	$\mathbf{4 8}$	$\mathbf{1 8}$	$\mathbf{4 2}$
Central Value	$\mathbf{0 . 9 8 9 8}$	$\mathbf{- 0 . 9 7 6 1}$	$\mathbf{- 0 . 9 9 2 0}$	$\mathbf{- 0 . 9 8 0 8}$

$$
\bar{P}=\frac{\left\langle M_{1}\right\rangle}{I}=0.991(2) \quad \bar{T}=\frac{I(I+1)-3\left\langle M_{1}^{2}\right\rangle}{I(2 I-1)}=-0.978(5)
$$

Results

Future work: Initial sublevel distribution?

- Has little effect on equilibrium state but can affect the shape of the initial peak
- Polarization is limited by "unpolarized" β-asymmetry
- Alignment (T) unconstrained (for now)

-
ment
5 2 6 1 5 36 3 37 19 12 3808 $978(5)$

Results

Future work: Initial sublevel distribution?

- Has little effect on equilibrium state but can affect the shape of the initial peak
- Polarization is limited by "unpolarized" β-asymmetry
- Alignment (T) unconstrained (for now)

-
ment
5 2 6 1 5 36 3 37 19 12 3808 $978(5)$

Results

Future work: Initial sublevel distribution?

- Has little effect on equilibrium state but can affect the shape of the initial peak
- Polarization is limited by "unpolarized" β-asymmetry
- Alignment (T) unconstrained (for now)
- Model MOT dynamics to limit initial alignment

Optics Layout

Why ${ }^{37} \mathrm{~K}$?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $\pi=\frac{3}{2}^{+} \rightarrow \frac{3}{2}^{+}$is a mixed Fermi-Gamow Teller decay

$$
\begin{aligned}
& \Delta t_{1 / 2}=0.08 \% \\
& \text { (Shidling et al. 2014) } \\
& \Delta B R=0.14 \% \\
& \Delta Q_{E C}=0.003 \%
\end{aligned}
$$

Why ${ }^{37} \mathrm{~K}$?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $\pi=\frac{3}{2}^{+} \rightarrow \frac{3}{2}^{+}$is a mixed Fermi-Gamow Teller decay

$$
\Delta t_{1 / 2}=0.08 \%
$$

(Shidling et al. 2014)
$\Delta B R=0.14 \%$
$\Delta Q_{E C}=0.003 \%$

$$
\begin{aligned}
& \Delta \mathcal{F} t=0.18 \% \\
& \Delta \rho=0.4 \%
\end{aligned}
$$

Why ${ }^{37} \mathrm{~K}$?

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- $\pi=\frac{3}{2}^{+} \rightarrow \frac{3}{2}^{+}$is a mixed Fermi-Gamow Teller decay

$$
\Delta t_{1 / 2}=0.08 \%
$$

(Shidling et al. 2014)
$\Delta B R=0.14 \%$
$\Delta Q_{E C}=0.003 \%$

$\Delta \mathcal{F} t=0.18 \%$
$\Delta \rho=0.4 \%$
$\overline{A_{\beta}(0)=-0.5706(7)}$

$\rightarrow \Delta A_{\beta}=0.12 \%$

Photoionization Events

Measure $V_{u d}$ with mirror nuclei

TRINAT's x2-MOT System

- Collection trap is coupled to TRIUMF-ISAC beam line
- Transfer atoms to second trap for precision measurement

Initial Polarization

- Atoms can be polarized in a MOT if beams are unbalanced. We avoid this
- Use β-asymmetry of trapped (unpolarized) atoms to constrain initial polarization

S. Behling "Measurement Of The Standard Model Beta Asymmetry Parameter, A_{β}, in ${ }^{37} \mathrm{~K}$ " Ph. D Thesis. Texas A \& M University, 2015.

Correlation measurements with polarized nuclei

LTNO

- Brute-force alignment of nuclear spin
- P calculated knowing the temperature
- Backscattering from source holder

Optical Pumping
Stern-Gerlach

- Physically
separate polarized atoms
- Very high
polarization, but inefficient

- State selection; very high P
- Open geometry minimizes backscattering
- Must measure polarization

