

Jack Bishop

Triple-alpha

Triple-alpha proces

Neutron

upscattering

Rate enhancemen

reace emiancemen

Overview

Neutron-induced measurements

Experimental seti

Canalusian

Conclusion

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishop
Postgraduate Research Associate
Cyclotron Institute
Texas A&M University

Joint Nuclear and Astrophysics Virtual Seminar September 25th 2020

Overview

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

1 Triple-alpha process

2 Neutron upscattering

3 TexAT TPC

4 Neutron-induced measurements

5 Conclusion

1/24

Jack Bishop

Triple-alpha process

Triple-alpha proce

Neutron

upscattering

Stellar environme

T--- AT TD

Overview

Neutron-induced

Evnerimental setu

Conclusion

Triple-alpha process

Triple-alpha process - Hoyle state

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishor

Triple-alpha

Triple-alpha process

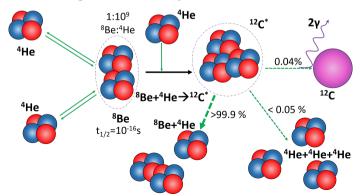
Neutror

upscattering

Rate enhanceme

TexAT

Overview

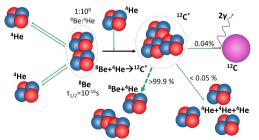

measurements

Experimental seti

Conclusion

■ Triple-alpha process overcomes the A=5, 8 mass gap - fusing three α -particles into carbon-12

■ Presence of resonance at 7.65 MeV in carbon-12 enhances reaction rate by seven orders of magnitude - the Hoyle state!


Reaction rate

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Reaction rate

■ Reaction rate given by:

$$R \propto \frac{\Gamma_{\alpha}\Gamma_{rad}}{\Gamma} T^{-3/2} \exp\left(-\frac{Q}{kT}\right) \xrightarrow{\Gamma_{\alpha} \approx \Gamma} \Gamma_{rad} T^{-3/2} \exp\left(-\frac{Q}{kT}\right)$$
 (1)

■
$$\Gamma_{\alpha} = 9.3 \text{ eV}$$

$$\Gamma_{rad} = \Gamma_{\gamma} + \Gamma_{\pi} = 38 \text{ meV}$$

$$\Gamma_{\gamma} \approx 60\Gamma_{\pi}$$

Neutron

upscattering

Neutron upscattering

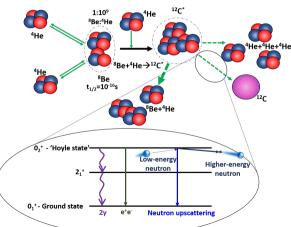
Neutron upscattering

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bisho

Triple-alpha

Triple-alpha proces


Neutron upscattering

Determinent

Rate enhancemen

Overview

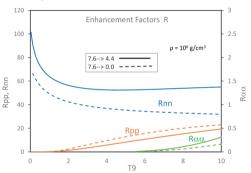
Neutron-induced measurements Experimental setup Additional 'radiative' decay mechanisms available! Particle-induced upscattering

Enhancements from neutron/proton upscattering

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bisho

Triple-alpha


Triple-alpha process
Reaction rate

Neutron upscattering

Stellar environmen

TexAT

Neutron-induc measurements Experimental setup Conclusion [M. Beard et al. Phys. Rev. Lett. 119, 112701]

High-density environment, large neutron enhancements at low temperature (≈ 0.2 GK)

Neutrino wind following a supernova explosion/in an x-ray burster

Time-reversal symmetry

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bisho

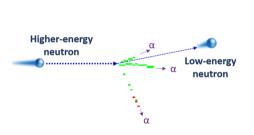
Triple-alph

Triple-alpha proces
Reaction rate

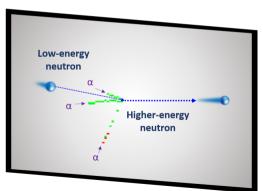
Neutron upscattering

Stellar environmer

Rate enhancemen


Overview

measurements


Experimental se

Conclusion

Experimental case

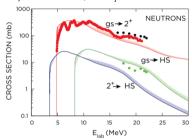
Time-reversed astrophysical case

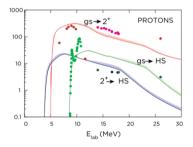
Enhancements from neutron/proton upscattering

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bisho

Triple-alpha


Triple-alpha process
Reaction rate


Neutron upscattering

Rate enhancement

0

Neutron-induced measurements Experimental setup [M. Beard et al. Phys. Rev. Lett. 119, 112701]

- Resonances in proton inelastic channel, large effect on XS if neutron resonances also present
- lacktriangle No data on gs ightarrow HS from 8 to 16 MeV, higher E data deviate from HF OMP predictions

Jack Bishop

Triple-alpha

Triple-alpha proces

Neutron

upscattering

Stellar environme

TexAT TPC

Overview

Neutron-induced

Experimental setu

Conclusion

TexAT TPC

TexAT overview

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishop

Triple-alpha

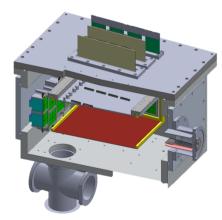
Triple-alpha process
Reaction rate

Neutron

upscattering Stellar environme

TexAT TP

Overview

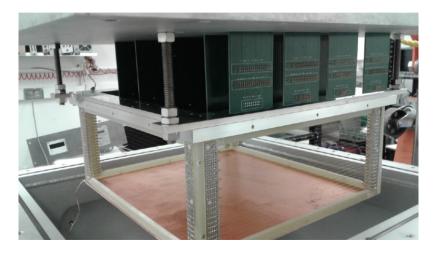

measurements

Experimental setup

Conclusion

TexAT TPC - TEXas Active Target Time Projection Chamber

- \blacksquare 224 × 240 × 130 mm sensitive area
- Segmented readout using Micromegas, 1024 channels, pos. res. ≈ 1.5 mm in beam direction
- Gas Electron Multipliers (GEMs) provide additional gain. Low dE/dx particle tracks possible
- General Electronics for TPCs (GET) system digitizes waveforms. 512 time buckets at 10 MHz
- Ancillary Si+Csl telescope wall


NIM paper: E. Koshchiy et al. - NIMA 957, 163398 (2020)

TexAT overview

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Overview

How a TPC works

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishop

Triple-alph

Triple-alpha proc

Neutron

upscattering

Stellar environmer

Kate enhanceme

TexAL IP

Overview

Neutron-induced

Experimental setu

Conclusion

Micromegas

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

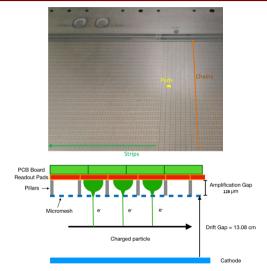
Jack Bisho

Triple-alpha

Triple-alpha proces
Reaction rate

Neutron

upscattering


Rate enhancement

Overview

Neutron-induce measurements Experimental setup Conclusion ■ Micromegas-based readout

Amplify and measure electron drift signals

- \blacksquare 128 μ m gap
- Central region pads 1.75 x 3.5 mm
- Side regions require multiplexing into 'strips' and 'chains' parallel and perpendicular to beamline
- THGEMs (1.25 mm thick) or GEMs (128 μ m thick)

Jack Bishop

Triple-alpha

Triple-alpha proces

Neutron

upscattering

Stellar environmer

T--- AT TE

Ouomiou

Neutron-induced measurements

Experimental setu

Conclusion

Neutron-induced measurements

Neutron-induced measurements with TexAT

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishop

Triple-alpha process

Triple-alpha process Reaction rate

upscattering

Stellar environments

Rate enhancement

Overviev

Neutron-induc measurements


Experimental setup
Conclusion

TPCs can be well-suited to many different types of neutron-induced measurements

Active-target TPC filled with CO₂ looking to measure:

- $^{12}{\rm C}(n,n_2)3\alpha$ inelastic neutron scattering to the Hoyle state
- ($^{16}O(n,\alpha)^{13}C$ run parasitically)

These two measurements can be measured with the same experimental setup - TexAT with 50/100 Torr CO $_2$ gas. Represents a great opportunity for future measurements with low-energy recoil products - can be well resolved using low pressure TPC.

Experimental setup

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishor

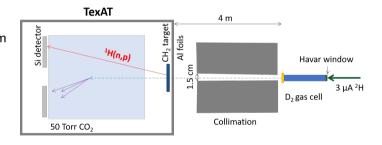
Triple-alpha

Triple-alpha process
Reaction rate

Neutron

upscattering

Rate enhancement


Overviev

Neutron-induced measurements

Experimental setup

Edwards
 Accelerator Lab Ohio University

- 50/100 Torr CO₂
- Neutron beam from d(d,n) reaction scanning from 7.2-10.0 MeV
- 0.5×10^4 neutrons/s: $\sigma(E_n) \approx 200 \text{ keV}$
- Normalization is a big issue!

Normalization

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Experimental setup

Total normalization is very important. Relying on a few different techniques:

- Total integrated beam current 0° cross section known very well for d(d,n)
- Measurement of $^{12}C(n, n_0)$ and $^{16}O(n, n_0)$ inside TexAT
- Measurement of ${}^{1}H(n,p)$ cross section using a silicon detector inside TexAT at $\sim 10^{\circ}$ from a thin CH₂ foil
- NE213 placed directly behind TexAT
- Normalization with $^{12}C(n,\alpha)$ and $^{16}O(n,\alpha)$

Current status

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Experimental setup

'Difficult' experimental campaign - COVID19 delays mid-experiment Plenty of beautiful Hoyle events! Reconstructed and separated - big image recognition problem!

Appropriate selections need to be placed and the total counts accumulated \rightarrow cross section

Press Coverage

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

ack Bisho

Triple-alpha

Triple-alpha process
Reaction rate

Neutron

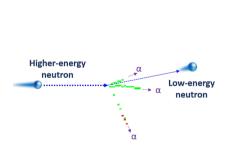
upscattering

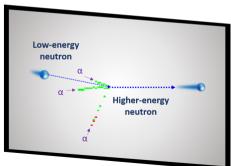
Rate enhancement

Overview

Neutron-induce measurements

Experimental setup


Conclusion


Scientific American Article: March 19, 2020

Carbon Conundrum: Experiment Aims to Re-create Synthesis of Key Element

Experimental case

Time-reversed astrophysical case

Jack Bishop

Triple-alpha

Triple-alpha proces

Reaction rate

upscattering

upscattering

Stellar environmen

Kate enhanceme

TexAL IP

Overview

Neutron-induced

Experimental setu

Conclusion

CU

Conclusion

Conclusions

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bisho

Triple-alpha process

Reaction rate

upscattering

Stellar environment

Rate enhancements

Overview

Neutron-induced measurements Experimental setup ■ TexAT - general purpose TPC capable of measuring different reaction mechanisms

- Study the role of neutron inelastic scattering to the Hoyle state
- Cross section of this reaction informs us about time-reversed astrophysical case
- Enhances the triple-alpha reaction rate
- 'Might the enhanced rates produce sufficient seeds in the neutrino driven wind of a core-collapse supernovae to make a successful r process less likely?'
- First instance of neutron-induced measurements with a TPC
- Results coming soon*!

Collaborators

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Jack Bishop

Triple-alpha process

Triple-alpha process
Reaction rate

Neutron

Stellar environment

Rate enhancements

Overviev

Neutron-induce measurements

Experimental setu

Conclusion

J. Bishop*, C.E. Parker, G.V. Rogachev, E. Koshchiy, S. Ahn *Cyclotron Institute, Texas A&M University, College Station, USA* L.G. Sobotka, R. Charity, N. Dronchi, E.V. Ohstrom, C. Pruitt

Department of Chemistry, Washington University, St., Louis, USA

S.T. Marley, R. Malecek

Department of Physics and Astronomy, Louisiana State University, USA

C.R. Brune, T.N. Massey, Z. Meisel, A. Voinov, K. Brandenburg, G. Hamad, Y. Jones-Alberty,

M. Saxena, N. Singh, D. Soltesz, S. Subedi, J. Warren

Edwards Accelerator Laboratory, Ohio University, Athens, USA

E. Pollacco

IRFU, CEA Saclay, Gif-sur-Yvette, France

R. Smith

Faculty of Science, Technology and Art, Sheffield Hallam University, UK

Tz. Kokalova, C. Wheldon

School of Physics and Astronomy, University of Birmingham, UK

^{*}jackbishop@tamu.edu

Project funding

Measurement of neutron-induced enhancement of the triple-alpha process with a Time Projection Chamber

Conclusion

