reactions with DAPPER Toby King⁴, Shuya Ota⁷, Steven Pain⁴, Sebastian Regener^{1,2}, Andrea Richard⁶, and Sherry J. Yennello^{1,3}

Preliminary Analysis towards ⁵⁵Fe Photon Strength Function using ⁵⁴Fe(d, p)⁵⁵Fe Arthur Alvarez^{1,2}, Alan B. McIntosh¹, Kris Hagel¹, Austin Abbott^{1,3}, Maxwell Sorensen^{1,3}, Jerome Gauthier¹, Aaron Couture⁵,

Introduction

- Photon Strength Function is a key constraint on neutron capture reaction modeling
- Neutron capture reaction modeling develops nuclear science, nucleosynthesis, stockpile science, and reactor design.
- Test run was conducted to characterize the **Ionization Chamber from the GODDESS** array
- An experimental run on ⁵⁵Fe PSF was done in December similar to previous DAPPER campaigns.
- Latter part of the experiment was put in radioactive beam mode in preparation for ⁶⁰Fe

DAPPER+IC

Detector Array for Photons Protons and Exotic Residues

Silicon (S3): Protons are emitted at a backwards angle towards the S3 after (d, p) reaction where the annular and pie faces allow for measurement of proton energy, and angle(θ , ϕ)

BaF₂: All 128 detectors measure gamma ray energy from de-excitation of residue.

IC: Ionized gas collects on anode and cathode giving measurements for E-Loss and dE of the beam and contaminants

